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Abstract. We study the impact for mechanism design of the possibility that
some participants are uninformed about the rules associated with a trading
mechanism but otherwise rational. Since “deviations” by the mechanism de-

signer are not observed by these uninformed participants the nature of the
“equilibrium” of the design game changes, as do equilibrium mechanisms. We
study the traditional independent private value auction environment and pro-
pose a method that makes it possible to characterize an interesting class of

equilibrium outcomes for the game using standard reduced form direct mech-
anisms. We show that payoffs in the equilibrium where the seller’s expected

revenue is highest within this class can be characterized using a surprisingly

simple mechanism called an equal priority auction. Informed bidders with in-
termediate valuations receive offers with the same probability as uninformed
buyers, despite the fact the seller believes that the informed will accept the

offers for sure, while uninformed buyers might not.
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1. Introduction

There is an acronym that floats around the internet - TL:DR - that explains
why no one reads your email messages. It means “too long, didn’t read”. The
long translation we adapt in this paper is “... there is undoubtedly information in
your message, but it’s value to me isn’t likely to be as high as what I could get by
reading something else”. The spirit is similar to rational inattention except that we
are interested the impact this has on revenue optimal trading mechanisms rather
than on details of how information is acquired.

This type of inattention was noticed long ago. The marketing literature has
documented buyers’ tendency to ignore information when they make purchase de-
cisions. The simplest commitment of all is a price commitment. Dickson and
Sawyer (1990) asked buyers in supermarkets about their price knowledge as they
were shopping. Only 50% of all respondents to their in store survey claimed to
know the price of the object they had just taken off the supermarket shelf to put
in their basket. Even when the item being placed in the basket had been specially
marked down and heavily advertised, 25% of consumer did not even realize the
good was on special.

Of course, having buyers be pleasantly surprised to learn that a price is lower
than they expected isn’t really a problem. The problem is the buyers who didn’t
know the price was on special, and went somewhere else to buy it. If prices can’t
influence buyer behavior, marketing has a problem.

The Dickson and Sawyer (1990) results sound somewhat behavioral. However
uninformed buyers can exist when all traders are fully rational in the usual way
economists understand that term. For example something as simple as having to
create a user account on the seller’s website is enough to create uninformed traders.
There is a cost to filling out a web form and providing credit card details and other
personal information. How big this cost is relative to the gains to trade on the
website is hard to know. However, it is surely enough that some buyers just won’t
bother to create these accounts.

The seller could respond by giving up on buyers who won’t create an account.
However, our theorems below show that this is not as profitable for sellers as cre-
ating a trading algorithm that provides gains to trade to both types of buyers.

Creating these trading opportunities creates two problems. Both problems stem
from the fact that uninformed buyers can’t see what commitments the seller is
making to informed account holders. In fact we’ll show that equilibrium will require
that the seller hide the details of the trading algorithm from buyers who don’t have
accounts. Since no commitments can be made to the uninformed, actual trading
mechanisms will have to be ex post individually rational. This means the the seller
can only make offers to the uninformed which may be rejected. What happens
when there is a rejection depends on trading conventions that are exogenous to the
seller. Here we assume that rejected offers lead to a failure to trade. We discuss
alternatives later in the paper.

The second issue arises because the informed can mimic the uninformed but
not conversely. Whatever treatment the algorithm specifies for the uninformed
will create potential incentive constraints for the informed. Furthermore, since
the uninformed can’t see the commitments of the informed, there is a sequential
rationality constraint for the seller in his treatment of the uninformed. Since the
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uninformed must correctly anticipate how their messages affect their treatment,
this creates a potentially very complex fixed point problem.

As we are primarily interested in developing a method to characterize revenue
maximizing mechanisms that we can adapt to more general problems, we focus here
on equilibrium outcomes in which uninformed buyers convey no useful information
to the seller before they trade.

We develop a solution concept that is a refinement of Bayesian equilibrium. In
a finite environment our solution concept coincides with the seller optimal perfect
Bayesian equilibrium. In continuous environments, our solution always exists while
perfect Bayesian equilibrium never does.1 In the case where uninformed buyers con-
vey no information to sellers, we show that our solution is unique. One mechanism
that implements our solution we call an equal priority auction. This auction treats
informed buyers with intermediate valuations in exactly the same way as it treats
uninformed buyers. When informed buyers have very high or very low valuations,
the seller treats messages as bids. If the seller decides to sell to a buyer with one of
these very high or low valuation, she will make an offer equal to the second highest
bid she has received - much as she would in a standard auction.

When the highest bids of the informed are in an intermediate range, the best
mechanism commits the seller to make an offer to the informed and uninformed
with equal probability. The sense in which this is a commitment is that if the offer
is made to the uninformed it will be rejected with positive probability, whereas
an informed buyer who has submitted an intermediate bid will always accept it.
Like committing to a reserve price in a standard auction, committing to an ex post
unprofitable action is there to satisfy incentive constraints for informed bidders.

As a consequence, the seller’s best revenue falls short of the revenues from a
Myerson optimal auction by an amount that depends on how likely it is that buyers
are uninformed. As the probability buyers are all informed approaches 1, revenues
approach Myerson optimal revenues. If the probability is close to one that all buyers
are uninformed, revenues converge to those of a fixed price trading mechanism.

Our numerical simulations suggest that even when the probability that buyers
are uninformed is intermediate, trade occurs at the fixed equal priority price with
high probability. The fixed price offer is triggered when the highest bid from the
informed lies in a non-degenerate interval that is larger the more likely it is that
bidders are uninformed. This may help to explain why auction like mechanisms are
relatively uncommon for many commodities.

One well known trading platform on which auctions are used is eBay. The
environment on eBay doesn’t fit our model exactly because buyers arrive randomly.
However, a seller on eBay can implement something very close to what we describe
here by running an auction with a “buy it now” option. Since buy it now options
disappear on eBay once a buyer submits a bid, both low and high value buyers will
want to bid, while intermediate value buyers would be inclined to accept the buy it
now price since they will pay it anyway in our mechanism if they win the auction.

1.1. Heuristic. To understand our modeling approach it may help to make a short
heuristic argument.

1We thank a referee for pointing this out to us.
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In an environment with uninformed buyers, the seller would really prefer that
all buyers be informed since actual trades will be carried out by some kind of algo-
rithm which can implement any kind of commitment. For the moment, assume that
the informed and uninformed use different message spaces. A natural commitment
in our environment would be for the seller to commit to a second price auction
with optimal reserve and bids contained in the message space of the uninformed.
Committing to an optimal reserve which would seemingly implement the Myer-
son optimal revenue. Acting on their expectations, the uninformed will bid their
valuations anticipating being offered a price which is equal to the second highest
bid.

Now the seller has a profitable deviation which will yield more revenue than the
Myerson auction. He can change his mechanism to a first price auction in which bids
must be submitted in the message space that is only known to informed bidders.
The uninformed can’t see this change, so they continue to bid their valuations in
the message space they understand. Payoffs to the informed are unchanged by this
deviation since they just alter their bids. The seller will extract the buyer’s full
surplus each time he chooses to trade with an uninformed bidder.

We’ll show that in equilibrium seller’s will always use mechanisms that require
informed bidders to send messages in their own message space. The complication
for sellers arises from the fact that informed buyers don’t have to bid in their
own message space which creates a new incentive constraint that the equilibrium
mechanism must satisfy.

2. Unobserved Mechanism Design

There are n potential buyers of a single homogeneous good. Each buyer has a
privately known valuation w that is independently drawn from the interval [0, 1].
We assume that all valuations are distributed according to some distribution F
with strictly positive density f . Buyer’s payoff when they buy at price p is given
by w − p. The seller’s cost is zero, so the profit from selling at price p is just p.

Define

π(w) = (1− F (w))w

as the revenue function from a take-it-or-leave-it offer w to uninformed buyers.
In what follows,2 we restrict attention to distribution functions such that π(w) is
strictly concave. Following the standard auction literature, we also define

φ(w) = w −
1− F (w)

f(w)

as the virtual valuation function for informed buyers. We have φ(0) < 0 and
φ(1) = 1, and so φ(w) crosses 0 at least once. Since π′(w) = −φ(w)f(w), concavity
of π(·) implies that φ(w) crosses 0 only once. Let the crossing point be r∗; this is
also the unique maximizer of π(w). Furthermore, φ(w) is strictly increasing in v
for w ≥ r∗.3 The valuation r∗ represents the optimal reserve price in a standard

2The concavity assumption is used when we characterize the optimal equal priority auction

and show that it achieves an equilibrium of our unobserved mechanism design game. It is not
used in Theorem 1.

3At any w ∈ (0, 1), if f(w) is non-decreasing, then by definition φ(w) is strictly increasing; if
f(w) is strictly decreasing at w and if φ(w) ≥ 0, then φ(w) is strictly increasing in w, because

concavity of π(w) implies that φ(w)f(w) is strictly increasing in w.
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auction, regardless of the number of buyers.4 That is, when α = 0, the seller’s
outside option is always 0, so the reserve price is such that the virtual valuation of
the buyer with w at the reserve price is equal to the seller’s outside option.

Buyers are either informed or uninformed. We use τi as the “information type” of
buyer i, and write τi = ǫ if i is informed, and τi = µ if i is uninformed. Uninformed
buyers communicate with the seller using a message space Mµ - assumed to be a
compact metric space which embeds [0, 1], the set of values. Informed buyers have
access to a distinct message space Mǫ, also compact and metric. We’ll assume that
Mǫ embeds both [0, 1] and Mµ.

The most important assumption is that it is common knowledge that the seller
can tell whether or not a message comes from Mǫ, for example because they come
from a different source. So when a buyer sends a message in Mǫ, the seller knows
that they are informed. If a buyer’s messages comes from Mµ, the seller can’t tell
whether the buyer is informed or uninformed.

Uninformed buyers do not see the rules the seller is using to convert messages
to offers. Informed buyers are fully aware of these rules. The seller and each
of the buyers believes that each of the others is informed with probability 1 − α
independent of their valuation.

The seller writes an algorithm that processes the messages sent by all the buyers,
then chooses which buyer to make an offer to. All buyers know that if the seller
makes them an offer p and they accept it, then the seller is committed to transact
with them at price p.

Any offer can be rejected. We assume when an offer is rejected, the process ends
without trade. We discuss this assumption later in the paper. This is quite different
from standard mechanism design where a mechanism produces an allocation. This
turns our problem into a game where the payoffs in the game are endogenously
determined by the seller.

Let M = Mµ ∪Mǫ. Let qi : M
n → [0, 1] be an integrable function that gives

the probability with which an offer is made to bidder i for every possible profile of
messages from buyers. A profile of these functions is feasible if

∑

i

qi (b1, . . . , bn) ≤ 1

and qi (b) ≥ 0 for every profile b ∈ M.
Let △ [0, 1] be a set of probability measures on the interval of values such that

every bounded function is integrable. Let Pi : Mn → △ [0, 1] be an integrable
function that describes the distribution of price offers buyer i receives conditional
on being made an offer. If we use the notation (P, q) = ({Pi}

n

i=1 , {qi}
n

i=1), then the
seller’s mechanism or algorithm is just a feasible pair (P, q).

A strategy rule σi for buyer i is a pair of integrable functions (σǫ
i , σ

µ
i ) with

σǫ
i : [0, 1] × Γ → △ (M) and σµ

i : [0, 1]→ △ (Mµ) that specifies what messages
the buyer will send for each of their valuations conditional on whether the buyer

4In much of the auction literature, the seller has the fixed outside option of keeping the good.

The virtual valuation function φ(w) is assumed to be strictly increasing to simplify the analysis
(the “regular case” in Myerson (1981)). In our model, the seller’s outside option in an auction
with informed buyers is to give it to an uninformed buyer with a take-it-or-leave-it offer, and is

endogenous. We do not need to assume that φ(w) is strictly increasing for valuations below r∗.
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observes the seller’s mechanism.5 Write σ = (σǫ, σµ) =
(

{σǫ
i}

n

i=1 , {σ
µ
i }

n

i=1

)

. We’ll
use the usual notation (σǫ

−i, σ
µ
−i) to refer to the strategy rules used by the other

players. Note that these strategy rules depend on the other buyers’ information
types which buyer i doesn’t know. Note that when taking expectations, it must
be taken over both profiles of the other buyers’ valuations v−i and profiles of their
information types τ−i.

Let R (γ, σ) be the expected revenue for the seller from mechanism γ = (P, q)
when the buyers use strategy rules given by σ. This is given by

R(γ, σ) = Ev,τ

{

n
∑

i=1

qi(σ)

∫

pi≤vi

pi dPi(pi;σ)

}

,

where the expectation is taken over profiles of buyers’ valuations v and their infor-
mation types τ . Note that R (γ, σ) depends on σǫ only through σǫ(·, γ).

Definition. The imperfect information game G is defined to be the extensive form
game of imperfect information in which the seller first commits to some γ ∈ Γ,
then the buyers send messages to the seller that depend on γ if and only if they are
informed.

The game G implicitly depends on the probability α with which buyers are
uninformed. When this is important, we’ll sometimes write G (α), but otherwise
we’ll omit the α.

Our solution concept uses a refinement of Bayesian Nash equilibrium. Neither
perfect Bayesian nor sequential equilibrium work in our context because sellers can
use mechanisms which preclude any kind of sequential rationality. For example,
the seller could deviate to a mechanism in which all informed bidders are asked to
submit bids with an offer with price 0 made to the buyer who submits the highest
bid which is strictly less than 1. This would be a silly deviation. Yet no matter
what beliefs the players hold about each other or what strategies they play, either
some buyer will have a profitable deviation, or some buyers will not be able to find
best replies.6

In order to describe the refinement, we need the following definitions:

Definition. The continuation game G (γ, σµ) is the Bayesian game played by all the
informed buyers where the seller’s uses mechanism γ = (P, q) and the uninformed
buyers use strategy σµ. A profile of strategies ζi : [0, 1] → △ (M) used by each
informed bidder i is called a continuation equilibrium of G (γ, σµ) if for all i, vi ∈
[0, 1], b′ ∈ M,

Ev−i,τ−i

{

qi
(

ζi(vi), ζ−i(v−i), σ
µ
−i(v−i)

)

∫

max [vi − pi, 0] dPi

(

pi; ζi(vi), ζ−i(v−i), σ
µ
−i(v−i)

)

}

≥ Ev−i,τ−i

{

qi
(

b′, ζ−i(v−i), σ
µ
−i(v−i)

)

∫

max [vi − pi, 0] dPi

(

pi; b
′, ζ−i(v−i), σ

µ
−i(v−i)

)

}

.

Using the above continuation idea, we can give a simple definition of Bayesian
equilibrium.

5For save notation, we consider only pure strategies by informed and uninformed buyers. The

expressions and definitions introduced below can be easily extended to mixed strategies.
6We thank a referee for pointing this out to us.
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Definition. The mechanism γ = (P, q) along with strategies {σǫ, σµ} constitute a
Bayesian equilibrium for the game G, if R (γ, σǫ, σµ) ≥ R (γ′, σǫ, σµ) for all γ′ ∈ Γ;
σǫ(·, γ) is a continuation equilibrium for G (γ, σµ); and for all i, vi ∈ [0, 1], b′ ∈ Mµ,

Ev−i,τ−i

{

qi
(

σµ
i (vi) , σ

ǫ
−i (v−i, γ) , σ

µ
−i (v−i)

)

∫

max [vi − pi, 0] dPi

(

pi;σ
µ
i (vi) , σ

ǫ
−i (v−i, γ) , σ

µ
−i (v−i)

)

}

≥ Ev−i,τ−i

{

qi
(

b′, σǫ
−i (v−i, γ) , σ

µ
−i (v−i)

)

∫

max [vi − pi, 0] dPi

(

pi; b
′, σǫ

−i (v−i, γ) , σ
µ
−i (v−i)

)

}

As usual this isn’t a very restrictive solution concept since strategy rules used by
the informed don’t have to be a continuation equilibrium away from the equilibrium
path after γ is offered. As we can’t use solution concepts that impose sequential
rationality off the equilibrium path, we use the following refinement:

Definition. The triple {γ, σǫ, σµ} is a U-equilibrium if it is a Bayesian equilibrium
and in addition there does not exist an alternative mechanism γ′ and a continuation
equilibrium ζ for G (γ′, σµ) such that

(2.1) R (γ′, ζ, σµ) > R (γ, σǫ, σµ)

Since this is an unusual equilibrium concept, a few comments are in order. First,
observe that the concept of a continuation equilibrium depends on fixed behavior
of the uninformed. Since the uninformed don’t know the mechanism that is being
used off the equilibrium path, no restrictions are imposed on their behavior in a
continuation equilibrium.

Second, seller deviations to alternative mechanisms as described in (2.1) are re-
stricted to deviations for which some continuation equilibrium exists. This avoids
the problem when the seller offers a mechanism for which no continuation equilib-
rium exists. If it were the case that the seller could only choose prices from a finite
set, then we could use perfect Bayesian equilibrium as part of our solution concept
since seller’s choice set would be finite. In this case, the on path strategies in a
U-equilibrium would always be part of a perfect Bayesian equilibrium. The sense
in which our solution concept is stronger is that it selects out the seller optimal
perfect Bayesian equilibrium.

2.1. Direct mechanisms. We do not have a full characterization of all U-equilibria.
However, we can characterize a special U-equilibrium called babbling equilibrium,
where uninformed buyers send messages that are uninformative of their valuations,
that is, σµ

i (w) = σµ
i (w′) for all i and valuation pair w,w′.7 In any U-equilibrium,

the behavior of the uninformed is known and fixed, and the rest of the equilibrium
can be found by finding the seller’s best reply to this behavior. Since the seller can
fully commit to the informed buyers we can find this best reply using the revelation
principle and solving for an optimal mechanism. The definition of U-equilibrium
then requires the behavior of the uninformed to be a best reply to the optimal
mechanism. This is generally a difficult fixed-point problem. For babbling equilib-
rium, however, the problem can be solved by restricting to direct mechanisms that
ignore messages from uninformed buyers.

To do so we need to add some notation to describe a symmetric direct mechanism.
In what follows the notationm always means the number of uninformed buyers (i.e.,

7We haven’t been precise enough about the space of feasible mechanisms to prove existence.

We partially address this issue in Theorem 1 below.
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buyers who send messages in Mµ). We reorder n buyers such that the first n−m
of them are informed; the orders among the informed and among the uninformed
are arbitrary. For each v = (v1, . . . , vn) ∈ [0, 1]n, and for each i = 1, . . . , n−m, let

ρim(v) = (vi, v2, . . . , vi−1, v1, vi+1, . . . , vn−m, vn−m+1, . . . , vn};

that is, ρim(v) switches the positions of v1 and vi. Now we have

Definition. A symmetric direct mechanism δ is a collection of functions
{

(qǫm, pǫm)
n−1
m=0 , (q

µ
m, pµm)

n

m=1

}

where qτm, pτm : [0, 1]
n
→ [0, 1], τ = ǫ, µ, satisfy

• (qτm(v), pτm(v)), τ = ǫ, µ, are invariant to (vn−m+1, . . . , vn);
• (qǫm, pǫm) are invariant to permutations of (v2, . . . , vn−m), and (qµm, pµm) are
invariant to permutations of (v1, . . . , vn−m);

• for all v and for all m,

(2.2)

n−m
∑

i=1

qǫm
(

ρim (v)
)

+mqµm(v) ≤ 1.

The function qµm (v) gives the probability with which an offer pµm(v) is made to
an uninformed buyer given that there are m uninformed buyers and the profile of
valuations is v = {v1, . . . , vn}. The function qǫm (v) gives the probability with which
an offer pǫm(v) is made to buyer 1 given that there are m uninformed buyers and
the valuation profile of buyers i = 2, . . . , n is v−1 = {v2, . . . , vn}.

Since uninformed buyers babble, we require the allocation and the offer functions
of both the informed and the uninformed to be independent of the valuations of
the latter. Symmetry requires the allocation and the offer functions of uninformed
buyers to be invariant to permutations of the valuation profile of the informed, and
the allocation and the offer functions of each informed buyer to be invariant to
permutations of the valuation profile of the other informed buyers.

Since ρim (v) switches the positions of the first element of v and its i-th element,

the sum
∑n−m

i=1 qǫm
(

ρim (v)
)

gives the probability that the offer is made to one of
the first n − m elements of v. Then (2.2) ensures that when the informed buyers
have valuations given by the first n−m valuations in v, the probability with which
the good is offered to one of them plus the probability that it is offered to one of
the uninformed buyers is less than or equal to 1.

We can use the above definitions to build something that looks exactly like a
traditional reduced form mechanism. The probability with which an informed buyer
whose valuation is w receives an offer when there are m uninformed is

Qǫ
m(w) = Ev {q

ǫ
m(v)|v1 = w} .

Similarly

P ǫ
m(w) = Ev {q

ǫ
m(v)pǫm(v)|v1 = w}

is the expected price the informed bidder with valuation w would pay. Note that
we have assumed that in any direct mechanism an informed buyer accepts the offer
he receives with probability one. The is no max operator for informed buyers. This
assumption is justified because informed buyers know the mechanism.
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For each m = 0, . . . , n − 1, let B(m;n − 1, α) be the probability that there are
m uninformed buyers among the n− 1 others. This probability is given by

B(m;n− 1, α) =

(

n− 1
m

)

(1− α)n−1−mαm.

Now by taking expectations over m we have the usual reduced form functions:

Qǫ (w) =
n−1
∑

m=0

B(m;n− 1, α)Qǫ
m (w) ,

P ǫ (w) =
n−1
∑

m=0

B(m;n− 1, α)P ǫ
m (w) .

We then have

U ǫ (w) = wQǫ (w)− P ǫ (w) .

At this point, we inherit all the usual results from mechanism design in iid
environments for each of the informed buyers. In particular, if the mechanism δ
is incentive compatible with respect to valuations, the payoff to an informed buyer
with valuation w can be written as

(2.3) U ǫ (w) =

∫ w

0

Qǫ (x) dx,

with Qǫ(·) non-decreasing.8

The (interim) payoff to an uninformed bidder with valuation w is

Uµ (w) =

n−1
∑

m=0

B(m;n− 1, α)Ev

{

qµm+1(v)max
[

w − pµm+1(v), 0
]}

.

Definition. The mechanism δ is incentive compatible for informed buyers if (2.3)
holds, Qǫ(·) is non-decreasing and

U ǫ (w) ≥ Uµ (w)

for every w.

From standard arguments and properties of the binomial distribution, it is
straightforward to show that the seller’s revenue from any incentive compatible
direct mechanism δ is given by

R(δ) = n(1− α)

∫ 1

0

Qǫ (w)φ(w)f(w)dw +

n
∑

m=1

B(m;n, α)Ev {mqµm(v)π (pµm(v))} ,

where the first term is the revenue from informed buyers, and the second term
is the revenue from the uninformed buyers. The following result provides a two-
way relationship between the optimal direct mechanism and a U-equilibrium of the
unobserved mechanism design game with babbling by uninformed buyers.

8See, for example, Myerson (1981). We have assumed Uǫ(0) = 0 for simplicity. This is
usually not part of requirement for incentive compatibility, but clearly necessary for any revenue

maximizing direct mechanism.



UNOBSERVED MECHANISM DESIGN: EQUAL PRIORITY AUCTIONS 10

Theorem 1. Fix a game of unobserved mechanisms G (α). For any babbling equi-
librium (γ, σ), there is an incentive compatible and symmetric direct mechanism
δ∗, with R(δ∗) = R(γ, σ) and R (δ∗) ≥ R (δ) for every incentive compatible direct
mechanism δ. Conversely, any incentive compatible and symmetric direct mecha-
nism δ∗ that maximizes R (δ) can be used to construct a babbling equilibrium (γ, σ)
such that R(γ, σ) = R(δ∗).

The proof of this is relatively straightforward. We provide a sketch of the ar-
gument here. Fix a babbling equilibrium (γ, σ) in the game G (α) with message
spaces Mǫ and Mµ. The continuation equilibrium σ(·, γ) in the game (γ, σµ) on
the equilibrium path is just an equilibrium of a standard Bayesian game among the
informed buyers. The seller doesn’t actually care what the uninformed buyers say
in an equilibrium in which they don’t convey information about their types - all
he needs to keep track of is whether or not a buyer’s message was in Mµ. So it
doesn’t matter here whether uninformed buyers use asymmetric strategies. By the
standard revelation principle, there is an incentive compatible direct mechanism δ
in which informed buyers report their information type and valuations truthfully,
and gives the same expected revenue as γ. This direct mechanism δ might not be
symmetric. However, it is well known that in the symmetric, independent private
values environment, an asymmetric mechanism can’t produce a higher expected
revenue than a symmetric one. The definition of U-equilibrium allows the seller
to choose the continuation equilibrium for the fixed strategy of uninformed buy-
ers σµ. This means that there is a symmetric incentive compatible mechanism
δ∗ that achieves the equilibrium revenue R(γ, σǫ, σµ) and is an optimal incentive
compatible mechanism with respect to informed buyers.

The reverse direction follows by construction. Fix any message bµ ∈ Mµ. Let
σµ
i (vi) = bµ for all i and all vi ∈ [0, 1]. By assumption Mǫ embeds [0, 1] so we can

find a subset of Mǫ and a bijection Bǫ between this subset and [0, 1]. For each i
and vi ∈ [0, 1], let σǫ

i (vi, δ
∗) = Bǫ(vi), and σǫ

i (vi, γ) = bµ for all γ 6= δ∗. Then,
(β∗, σǫ, σµ) is a U-equilibrium of G (α).

3. Equal-priority auctions

Our main result is that for distributions such that π(·) is concave, the outcome
of a symmetric equilibrium of the game G (α) where uninformed buyers babble
corresponds to a revenue maximizing “equal priority auction.” We’ll show this in
two parts. First we’ll describe the set of equal priority auctions and describe one
that gives the seller the highest expected revenue. Later we’ll show how to verify
this is the best for the seller among all direct mechanisms.

An equal priority auction is fully characterized by four numbers, a “reserve price”
r, a price offer t, and the upper and lower bound v+ and v− of an interval of buyer
types. We’ll assume throughout that r ≤ t ≤ v− ≤ v+.

In what follows, there is some message that is treated as if the buyer who sent
that message is uninformed. Each of the informed buyers sends a bid. A realized
profile of messages and bids will then have m messages saying uninformed, and
n−m bids. Denote the number of informed buyers who bid in the interval [v−, v+]
as k. The auction treats the k informed buyers and m uninformed buyers with the
same allocation priority. Priorities of informed buyers who bid above v+ and who
bid below v− are equal to their bids, with the former all higher than the (m + k)
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buyers and the latter all lower than them. The allocation and offers in an equal
priority auction are determined in the following way:

• If m ≥ 1 and the highest bid received from the informed bidders is no larger
than v+, then the seller makes an offer t to each uninformed bidder and
an offer v− to each informed bidder who bid in the interval [v−, v+] with
probability 1/(m+ k).

• Otherwise, the seller makes an offer to the informed buyer who made the
highest bid. Let v′ be the second highest bid by an informed buyer. The
offer to the high bidder is



















v′ v′ > v+

r m = 0; v′ < r

v′ m = 0; v′ ∈ (r, v−)
v−+(m+k)v+

m+k+1 otherwise.

These rules constitute an indirect mechanism and support some kind of Bayesian
equilibrium in bidding strategies. Our main theorem is going to say that conditional
on uninformative messages from the uninformed bidders, the revenue maximizing
mechanism is going to be a special kind equal priority auction. To see what that
means, and to understand how to find the optimal one, one bit of notation is re-
quired. Suppose for the moment, potentially counter factually, that informed buyers
bid their true valuations Then using the allocation rule in the indirect mechanism,
we can calculate the probability with which each type of informed buyer trades.
This probability of trade function Qǫ for an informed buyer is given by
(3.1)






0 if w < r
(1− α)n−1Fn−1(w) if w ∈ [r, v−)

∑n−1
m=0 B(m;n− 1, α)

∑n−1−m

k=0 Bn−1−m
k (v−, v+)/(m+ k + 1)

where

Bn−1−m
k (v−, v+) =

(

n− 1−m
k

)

(F (v+)− F (v−))
kFn−1−m−k(v−).

For informed buyers with valuation w between r and v−, Q
ǫ(w) is such that

trade occurs only when there are no uninformed buyers who have a higher priority.
For w > v+, we have

Qǫ (w) = ((1− α)F (w) + α)
n−1

,

so informed buyers with valuation w above v+ have a higher priority than unin-
formed buyers.

For convenience, we denote Qǫ(w) for w ∈ [v−, v+] as χ(v−, v+). To provide a
convenient formula, we re-do the double summations over m and k by first summing
over k for fixed l = m+ k, and then summing over l. We can rewrite χ(v−, v+) as

n−1
∑

l=0

(

n− 1
l

)

((1− α)F (v−))
n−1−l 1

l + 1

l
∑

k=0

(

l
k

)

((1− α)(F (v+)− F (v−)))
kαl−k

=

n−1
∑

l=0

(

n− 1
l

)

((1− α)F (v−))
n−1−l 1

l + 1
((1− α)(F (v+)− F (v−)) + α)l.
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Thus,

(3.2) χ(v−, v+) =
((1− α)F (v+) + α)n − ((1− α)F (v−))

n

n((1− α)(F (v+)− F (v−)) + α)
.

The function χ gives the probability that a buyer whose valuation is in the pooling
interval [v−, v+] receives an offer. The logic in χ (v−, v+) is that an informed bidder
has the same chance of receiving an offer as any of the uninformed buyers and
informed buyers whose valuations are in the interval [v−, v+] as long as none of the
other informed bidders has valuation above v+. This explains why in the formula
(3.2) the denominator is the expected number of buyers who have the equal priority,
and the numerator is the total probability that there is one with the priority.

The trading probability Qǫ(w) of an informed buyer with valuation w is weakly
increasing. It is continuous except at three valuations. It jumps up at w = r from
0 to Qǫ(r). Another upward jump occurs at w = v−:

χ(v−, v+) > B(0;n− 1, α)Bn−1
0 (v−, v+) = (1− α)n−1Fn−1(v−).

It jumps up for the third time at w = v+:

χ(v−, v+) <
n−1
∑

m=0

B(m;n− 1, α)
n−1−m
∑

k=0

Bn−1−m
k (v−, v+) = ((1− α)F (v+) + α)n−1.

Then mimicking direct mechanisms we could define an expected payoff U ǫ(w) to
an informed buyer as follows:

(3.3) U ǫ(w) =

∫ w

0

Qǫ(x)dx.

We have the following result.

Lemma 2. There is a Bayesian equilibrium in truthful bidding strategies if

(3.4)

∫ v−

r

(1− α)n−1Fn−1(w)dw ≥ χ(v−, v+)(v− − t)

Two arguments are needed. The first is to show that the transfers defined above
together with the allocation rule are the ones that make truthful bidding incentive
compatible by informed buyers. Note when informed buyers bid their valuations
truthfully, they accept their offers with probability one. Since the allocation rule
is monotone, we accomplish the first step by showing that the payoff of informed
buyers from truthful bidding matches the payoff defined by (3.3) and (3.1) (Myer-
son,1981). The second is to show that when t satisfies condition (3.4) no informed
buyer can improve their payoff by pretending to be uninformed. This just follows
from the observation that the right hand side of (3.4) is the expected payoff for
an informed buyer with valuation v− pretending to be uninformed. By construc-
tion, uninformed buyers have the same allocation priority as informed buyers whose
valuations are in [v−, v+]. The expected payoff of informed buyers given by (3.3)
and (3.1) is strictly convex between r and v− and above v+. Thus, the incentive
condition for informed buyers not to pretend to be uninformed is satisfied if and
only if it holds for an informed buyer with valuation v−.

The following figure shows the Bayesian equilibrium payoffs to bidders with var-
ious valuations in an equal priority auction with a binding incentive compatibility
constraint (3.4). The green line represents the payoff each buyer type achieves by
acting as an uninformed bidder. The red curve represents the payoff to informed
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bidders - except that the payoff to informed bidders who bid in the interval [v−, v+]
coincides with the green line.

U

v0 r v−t v+

In an equal priority auction with a binding incentive compatibility constraint
(3.4), it is a matter of indifference for informed buyers with valuations in [v−, v+]
whether they participate in the auction by truthfully reporting their valuations, or
wait for the take-it-or-leave-it offer t just like an uninformed buyer. Indeed, the
same truth telling equilibrium among informed buyers is implemented if we change
the transfer rule, so that an informed buyer with valuations in the pooling interval
[v−, v+] receives the offer t, instead of the maximum of the second highest bid and
reserve price r when there are no other buyers in the equal priority pool, or v−
when there is at least one buyer in the pool. Informed buyers with low valuations,
between r and v−, and those with high valuations, above v+, have strict incentives
to participate in the auction.

3.1. Revenue Maximizing Equal Priority Auction. This already looks like
a direct mechanism, albeit one with very specific allocation rules. The seller’s
expected revenue from informed buyers is given by

(3.5) n(1− α)

∫ 1

r

Qǫ(w)φ(w)f(w)dw,

and the revenue from uninformed buyers is given by

(3.6)

n
∑

m=1

B(m;n, α)

n−m
∑

k=0

Bn−m
k (v−, v+)

m

m+ k
π(t) = nαχ(v−, v+)π(t).

The revenue maximizing equal-priority auction {r, t, v−, v+} maximizes the sum of
(3.5) and (3.6) subject to

r ≤ t ≤ v− ≤ v+;

and (3.4). The following lemma characterizes optimal equal-priority auctions.

Lemma 3. If (r, t, v−, v+) is an optimal equal-priority auction, then

0 < r < r∗ < t < v− < v+ < 1.



UNOBSERVED MECHANISM DESIGN: EQUAL PRIORITY AUCTIONS 14

Further, (3.4) holds with equality, and
(3.7)

α(π(t)−φ(v+)) = (1−α)

(

(v− − t)(φ(v+)− φ(v−))f(v−) +

∫ v+

v−

f(w)(φ(v+)− φ(w))dw

)

;

(3.8) −απ′(t) = (1− α)(φ(v+)− φ(v−))f(v−);

(3.9) −φ(r)f(r) = (φ(v+)− φ(v−))f(v−).

The three conditions (3.7), (3.8) and (3.9) are just the first order conditions
for an interior optimum. To establish that the optimal auction is indeed interior,
satisfying 0 < r < t < v− < v+ < 1, our proof (in the appendix) uses a variational
argument.

In a revenue maximizing equal priority auction, the reserve price r for selling to
informed buyers with low valuations (below v−) is set below the standard optimal
reserve price r∗ in the absence of uninformed buyers, as can be seen from (3.9).
This sacrifices revenue when all informed buyers have low valuations and there are
no uninformed buyers, but provides incentives for informed buyers whose valuations
are low but close to v− to participate in the auction instead of pretending to be
uninformed. Correspondingly, (3.8) implies that the take-it-or-leave-it price t to
uninformed buyers is raised above the optimal monopoly price r∗ in the absence
of informed buyers. This reduces the revenue when all buyers are uninformed, but
provides disincentive for informed buyers to pretend to be uninformed.

If the seller does not give the good to an informed buyer, he can always make a
take-it-or-leave-it offer to an uninformed buyer if there is one. Absent of incentives,
the seller would set the reserve price r(t) for informed buyers so that the virtual
valuation is equal to the expected profit π(t) of making the offer t to an uninformed
buyer:

φ(r(t)) = π(t).

However, by condition (3.7), the optimal equal priority auction has φ(v+) < π(t).
This means that the seller gives the good to informed buyers even though their
virtual valuations are lower than the value of the seller’s “outside option” π(t). This
reason for doing this is to provide incentives for informed buyers with valuations just
above v+ to participate in the auction rather than wait for the take-it-or-leave-it
offer.

The interval [v−, v+] is non-degenerate as long as uninformed buyers are present
in the model, i.e., α > 0. Briefly if the interval is degenerate, the seller can raise
expected revenue by cutting the price t that he offers to the uninformed. The
downside is that he loses revenue from the informed who are pooled together with
the uninformed. A variational argument can be used more generally to show that
the cutting the price offer to the uninformed has a first order impact on profits,
while the loss from the informed is second order.

When all bidders are surely informed the revenue from the optimal equal priority
auction converges to the revenue from the standard auction with reserve price r∗, as
it becomes optimal for the seller not to distort the reserve price r at all to provide
incentives (equation 3.9). The pooling 3.8 participating in the auction and receiving
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a take-it-or-leave-it offer t0 when all other buyers have valuations below v0,
9

∫ v0

r∗
Fn−1(w)dw = Fn−1(v0)(v0 − t).

The limit values of v0 and t0 satisfy the above indifference condition and the limit
version of first order conditions (3.7) and (3.8), given by

π′(t0)(v0 − t) + π(t0)− φ(v0) = 0.

We have t0 > r∗ and π(t0) > φ(v0). When α is arbitrarily close to 0, the incentives
for informed buyers not to pretend to be uninformed are provided by raising the
take-it-leave-it offer to an unlikely uninformed buyer above r∗, and not selling to
uninformed buyers even when the profit from doing so exceeds virtual valuations
of informed buyers.

In the opposite limit of α = 1, bidders are surely uninformed, and the revenue
from the optimal equal priority auction converges to the revenue from a take-it-or-
leave-it offer r∗. By (3.8), the seller no longer distorts t to provide incentives for
informed buyers. From (3.7), the upper-bound of the pooling interval converges to
r(r∗), satisfying

φ(r(r∗)) = π(r∗),

as the need for the seller to provide incentives for informed buyers with valuations
just above the upper-bound becomes second order. From the binding constraint
(3.4), the lower-bound of the pooling interval becomes r∗.10 This is to prevent an
unlikely informed buyer with a valuation equal to the lower bound from pretending
to be uninformed, as the buyer has almost zero chance of winning the auction with
the limit reserve price r1 satisfying (3.9)

−φ(r1)f(r1) = π(r∗)f(r∗).

As long as α is strictly less than 1, however, the auction is what provides incentives
for informed buyers with valuations just below the lower bound of the interval not
to pretend to be uninformed.

3.2. Equilibrium mechanisms. We use Lagrangian relaxation to show that an
optimal equal-priority auction provides the seller the highest expected revenue
among all direct mechanisms.

Recall that a direct mechanism δ consists of a series of functions (qǫm, pǫm)n−1
m=0 and

(qµm, pµm)nm=1. We first use the assumption that π(·) is strictly concave to simplify
the optimal design problem. We show that replacing offers pµm(v) to uninformed
buyers with a single offer reduces the deviation payoff for informed from pretending
to be uninformed, and improves the seller’s revenue from uninformed buyers due
to concavity of π(·).

Lemma 4. If π(·) is strictly concave, then in any optimal direct mechanism, pµm(v)
is independent of m and v.

9The limit of χ(v−, v+) as α goes to 0 and v− and v+ shrink to the same point of v0 is

Fn−1(v0). That is, when all other bidders are almost surely informed, a deviating informed
bidder will be the only buyer in the equal priority pool and will get the good with probability one
if all other bidders (who are informed) have valuation below v0.

10The limit of χ(v−, v+) as α goes to 1 is 1/n, as an unlikely informed buyer will surely face

n− 1 uninformed buyers in the equal priority pool after pretending to be uninformed.
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Using Lemma 4, we denote the constant price offered to the uninformed as pµ.
Define

Qµ =

n−1
∑

m=0

B(m;n− 1, α)Ev

{

qµm+1(v)
}

to be the total probability of an offer expected by an uninformed buyer (or a devi-
ating informed bidder). As we have shown in Theorem 1 the revenue maximizing
direct mechanism can be found by choosing a feasible mechanism δ that supports a
trading probability for the uninformed Qµ and a non-decreasing trading probability
function Qǫ (·) that maximizes

n(1− α)

∫ 1

0

{Qǫ (w)φ(w)f(w)dw}+ nαQµπ (pµ)

subject to

(3.10)

∫ w

0

Qǫ (x) dx ≥ Qµ max [w − pµ, 0]

for all w.
Let λ(·) be an arbitrary non-negative Lagrangian function from [0, 1] into R.

The relaxed problem is to maximize

n(1− α)

∫ 1

0

{Qǫ (w)φ(w)f(w)dw}+ nαQµπ (pµ)

+

∫ 1

0

λ (w)

{
∫ w

0

Qǫ (x) dx−Qµ max [w − pµ, 0]

}

dw,

again by choosing (qǫm, pǫm)
n−1
m=0, (q

µ
m)

n

m=1, and pµ such that the feasibility constraint
(2.2) is satisfied, and Qǫ (·) is non-decreasing.

The above problem can have different solutions depending on the choice of λ(·).
It is well known that the solution to the relaxed problem is an upper bound on
the solution to the full problem no matter what the Lagrangian function.11 The
method of proof is to try to find a function λ (·) such that the solution to the
relaxed problem is an equal priority auction. Since the equal priority auction yields
an upper bound on the seller’s payoff in the full problem, and since it satisfies all
the constraints in the full problem, it must be a solution to the full problem.

To see how we came up with the multiplier function λ(·), use integration by parts
and rewrite the Lagrangian as

n−1
∑

m=0

B(m;n− 1, α)

∫ 1

0

{

n(1− α)φ(w)f(w) +

∫ 1

w

λ(x)dx

}

Qǫ
m(w)dw

+
n−1
∑

m=0

B(m;n− 1, α)

(

nαπ(pµ)−

∫ 1

0

λ(w)max[w − pµ, 0]dw

)

Qµ
m+1.

We want to choose λ(·) to have the following properties: (i) It takes value of 0
outside of [v−, v+] so that the constraint (3.10) is slack. (ii) It takes non-negative
values on [v−, v+] such that the value of the expression in the first bracket in the

11The solution to the original problem is feasible, so the integral in the payoff to the relaxed
problem is non-negative. In turn, the solution to the original problem gives a lower payoff in the

relaxed problem than the solution to the relaxed problem itself.



UNOBSERVED MECHANISM DESIGN: EQUAL PRIORITY AUCTIONS 17

above Lagrangian is constant, so that it is point wise maximizing to have constant
Qǫ

m(w) for all w ∈ [v−, v+]. (iv) The constant value of the expression in the first
bracket in the above Lagrangian matches the constant value of the expression in
the second bracket, so that it is point wise maximizing to treat informed buyers
with valuations in the pooling interval the same as uninformed buyers in terms of
allocation. (iv) The value of the expression in the first bracket is greater than that
in the second bracket for w > v+ and smaller for w < v−, so that informed buyers
have higher priorities than uninformed buyers if their valuations are higher than
v+ and lower priorities if their valuations are lower than v−.

Theorem 5. Suppose that π(·) is strictly concave. Then, a revenue maximizing
equal priority auction is a revenue maximizing direct mechanism.

Putting together Theorems 5 and 1, we have shown that when π(·) is concave,
the outcome of a symmetric equilibrium of the game G (α) where uninformed buyers
babble corresponds to an optimal equal priority auction. Conversely, once we solve
for the revenue maximizing equal priority auction, we can construct a password
mechanism to support a symmetric equilibrium of the game. Since equal priority
auctions are relatively straightforward to describe and optimize over, we believe our
result provides a simple characterization of equilibrium outcomes of the unobserved
mechanism design game in the important class of uncommunicative messaging by
uninformed buyers.

The relative simplicity of optimal equal priority auctions also allows us to under-
stand welfare implications of unobserved mechanism design. The seller is of course
worse off compared to when all buyers are informed, as unobservability reduces the
power of commitment necessary for standard optimal auctions. This means that
the seller has incentives to “educate” buyers about the mechanism being offered.
But such attempt would be thwarted so long as the commitments in the mechanism
remain unverifiable.

When all n buyers are informed, they face the standard optimal reserve price
of r∗. In a symmetric uncommunicative equilibrium of the unobserved mechanism
design game G (α), the seller sets r < r∗, so an informed buyer with a valuation
between r and r∗ is better off than when there are no uninformed buyers around.
Informed buyers with higher valuations are affected by the presence of uninformed
and uncommunicative buyers in two opposing ways: they can win the auction even
though some uninformed buyer has a higher valuation, but they may also lose to
an uninformed with a lower valuation. The net effect is generally ambiguous, but
we can show that informed buyers with sufficiently high valuations benefit from
having uninformed buyers around if the number of buyers is sufficiently large.12

For uninformed buyers, the relevant welfare comparison question is how they
are affected by the presence of informed buyers. If there are no informed buyers,

12To see this, note that

Uǫ(1) =

∫
1

r

Qǫ(w)dw >

∫
1

v+

((1− α)F (w) + α)n−1dw.

The above is greater than
∫
1

r∗
Fn−1(w)dw when n is sufficiently large, because by integration by

parts, it is implied by

(1− α)

∫
1

v+

((1− α)F (w) + α)n−2f(w)wdw <

∫
1

r∗

Fn−2(w)f(w)wdw,

which is true for large enough n by using another integration by parts.
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uninformed buyers have an equal chance of receiving a take-it-or-leave-it offer equal
to r∗. Since in a symmetric uncommunicative equilibrium of G (α) the seller sets the
take-it-or-leave-it offer t strictly above r∗, an uninformed buyer with a valuation w
just above r∗ is worse off in equilibrium than when there are no informed buyers
around. For uninformed buyers with higher valuations, they have a higher priority
than informed buyers with valuations below v−, which makes them better off in
equilibrium, but lose out to informed buyers with valuations above v+. The net
effect is again ambiguous, but we can show that uninformed buyers are all worse
off in equilibrium than when there are no informed buyers if the number of buyers
is sufficiently large.13

4. Different Message spaces

So far we assumed that informed and uninformed have access to different message
spaces. In equilibrium the seller requires the informed to send messages that the
uninformed do not know how to send. This reduces notation and makes it easier to
explain the building blocks like U−equilibrium. However this separation of message
spaces isn’t necessary. Buyers ’learn’ the mechanism in one of two ways: either they
pay a cost to learn which messages lead to outcomes they want; or they guess (for
free) which messages work.

As we argued heuristically in the introduction, the seller will deliberately prevent
those who are guessing from getting it right. It isn’t that the seller doesn’t want
them to know how to bid, it is that he can’t help exploiting them when they do.

One way to support this is to have the seller randomize over mechanisms. Those
who pay the cost of seeing the mechanism learn the result of the randomization
and so learn the seller’s commitments.

Generally, mixed strategy equilibrium in mechanisms could allow the uninformed
to correctly guess some properties of the seller’s mechanism. For example, the seller
might randomize with equal probability between 2 reserve prices in an auction. The
uninformed might send informative message in such an equilibrium. If they did,
then apart from optimality conditions, the seller would have to be indifferent be-
tween which of the two reserve prices he uses. More generally, creates a complicated
fixed point problem.

In this paper we focus on equilibria in which uninformed buyers do not commu-
nicate at all. This can be supported with a single message space for both types
if the seller’s randomization (over mechanisms) induces the uninformed to believe
that there is no relationship between their messages and their trading probability.

Suppose that the uninformed do know how to bid in Mǫ. This can be accom-
plished by using something called a password mechanism. The seller chooses any
pure mechanism with a message space which is a subset of Mǫ then requires that
each such message be submitted along with a number chosen randomly from [0, 1]
(which must also be embedded in Mǫ).

For example, the seller could choose a mechanism that requires that users create
user accounts before they submit their bids. The uninformed don’t know this.14

13To see this, note that

Uµ(1) = χ(v−, v+)(1− t) < ((1− α)F (v+) + α)n−1(1− r∗).

The above is less than (1− r∗)/n when n is sufficiently large. The payoff functions are piece wise
linear, an uninformed buyer with any valuation is worse off in equilibrium.

14More precisely, they don’t know how to create a user account.
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An informed user who creates an account then submits a bid is also submitting a
user id. The assignment of user ids, of course, is randomized.

Assuming the equilibrium is such that the uninformed babble, then any mixed
equilibrium must be payoff equivalent to a U−equilibrium. The reason is that every
mechanism that lies in the support of the randomization must provide the seller
with the same expected revenue. At the point where the realization of the mecha-
nism is revealed to the informed, the distribution of messages from the uninformed
is unchanged. Revenues can then be no higher than revenues in a U−equilibrium,
a consequence of our Theorem 5 above. Notice that Theorem 5 uses direct mech-
anisms, so this will be true even if the seller’s commitment to the informed also
involves randomization.

5. Further Discussion

We have assumed that the seller chooses an offer, not an outcome. By construc-
tion the mechanism is ex post individually rational for this reason. If an offer is
made to an uninformed buyer in our equilibrium, it will be rejected with positive
probability. If it is, we assume the game ends without trade. For the auction
among the informed buyers this assumption has no impact since the winner of the
auction always wants to accept the offer when they win. For the uninformed this
assumption is unrealistic. Once the seller learns who the uninformed buyers are,
the seller may want to approach them in sequence with offers. One question is how
this might change if the seller could follow up a rejection by making an offer to one
of the other bidders.

Our results generalize to other trading technologies. The key property we use in
most of the proofs is the assumption that when buyers are uncommunicative, buyers
who trade with positive probability will trade with probability that is independent
of their value. Other technologies will also satisfy this property. For example, if
the seller can make a take it or leave it offer to each of a group of buyers in turn
until one of them accepts it, then provided each buyer in the group is approached
with equal probability, the buyer’ trading probability will be independent of their
type. In this case the equilibrium mechanism will be an equal priority auction like
the one we described in Figure 3. Of course, the parameters of this auction will be
different because an offer to the uninformed is more likely to be accepted making
fixed price trade more profitable.

On the other hand, there are trading technologies for which our results won’t
hold. For example, if the trading technology is such that the seller can make as many
offers as the seller wants after a rejection, the seller could start with a very high
offer which is made to each buyer in turn. If the offer is rejected by all the buyers,
then the seller could lower it slightly and repeat the process. Continuing with this
until a bidder accepts implements a kind of descending clock auction which will
generate revenue close to the Myerson optimal auction. In this mechanism there
is no communication at all yet all buyers trading probability increase with their
types.

Since the seller can’t make commitments to the uninformed, whatever trading
process occurs once the seller chooses which buyers he wants to approach must be
something that uninformed buyers understand and expect beforehand. If they ex-
pect a take it or leave it offer immediately and don’t get one, a natural continuation
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equilibrium would be for them to leave. We assume here this negotiation process
is beyond the seller’s control.

One other important assumption is that whether or not a buyer is informed is
exogenous and does not depend on their type. On the surface it might seem that
higher valuation buyers should be more likely to be informed. As the model now
stands, allowing buyers to decide whether they want to be informed based on some
cost and knowledge of their value leads to unraveling. No matter what strategies
buyers use some subset of valuations will induce buyers to learn the rules. Once
these choices have been made, sellers will choose revenue maximizing mechanisms
for the informed as a best reply to buyer strategies. Every such mechanism will
leave some buyer valuations with zero surplus. In a U-equilibrium buyers with these
low values must understand this before they choose to become informed, so they
will be unwilling to pay any cost to learn the rules.

This isn’t an issue for us. No seller would be willing to pay the considerable cost
of designing, coding and advertising an algorithm for a one off auction unless the
stakes in the auction are very high. A better assumption is that buyers learn rules
in anticipation of repeated interactions for a variety of products for which they
only know the distribution of their values. It could plausibly be that informed and
uninformed buyers draw their values from different distributions. This is readily
incorporated into our existing methodology at the cost of more notation. Again
the equilibrium will an equal priority auction provided the uniformed are uncom-
municative.

Finally, our assumption that the uninformed don’t communicate any information
about their values is important. We have constructed examples of U-equilibrium in
which uninformed buyers can communicate the fact that their values are too low
for them to trade. We believe this is the only kind of informative equilibrium that
will survive a very reasonable equilibrium refinement. However we do not yet have
a proof of this. In order to focus on the auction design implications we focus on
the simplest case here.

5.1. Literature. As mentioned above, the idea that consumers might not notice
prices is an old one in the marketing literature, as in Dickson and Sawyer (1990)
and references therein. The approach had been used earlier in economics, as in,
say Butters (1977), in which buyers randomly observe price offers in a competitive
environment. In that literature, firms advertise prices which some buyers see, while
others do not.15 These papers considered the same problem that we do, which is
how this unobservability would affect the prices that firms offer. The difference
here is that we are interested in mechanisms, not prices.

What ignorant buyers do is to provide type dependent outside options to in-
formed buyers. This is one of the most basic problems in the literature on competing
mechanisms. One example is the paper by McAfee (1993). His model had buyers
whose outside option involved waiting until next period to purchase in a competing
auction market just like the one in the current period. He imposed large market
assumptions to ensure that the value of these outside options was independent of
the reserve price that any seller in the existing market chose.

In our paper, the value of this outside option depends on the nature of the
mechanism the seller chooses for the informed. This makes it resemble the later

15See also Varian (1980), or Stahl (1994). Marian calls buyers informed if they see prices of

all firms, and uninformed if they do not.
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papers on competing mechanisms (at least in terms of outside options) like Virag
(2010) who studies finite competing auction models where a seller who raises her
reserve price increases congestion in other auctions, or Hendricks and Wiseman
(2020) who study the same problem in a sequential auction environment.

With buyers potentially uninformed of the selling mechanism but nonetheless
having rational expectations, the seller’s commitment power is limited. There is an
extensive literature on limited commitment (for example Bester and Strausz (2001),
Kolotilin et al. (2013), Liu et al. (2019), or Skreta (2015)). To our knowledge, our
model is the first to study commitment with respect to a subset of traders involved
in the same transaction.

A recent paper by Akbarpour and Li (2020) provides another model of limited
commitment. They assume that each individual buyer only observes the part of
the seller’s commitment in relation to the buyer’s own report, and impose a “cred-
ibility” constraint that the seller does not wish to secretly alter other parts of the
commitment. The logic we described above explaining why the second price auction
can’t survive as an equilibrium is used in a similar way in their paper. The differ-
ence between their approach and ours is that they assume the credibility constraint
applies to all buyers and describe mechanisms that are immune to this constraint.
Here we assume that credibility is an issue only for some buyers and find optimal
mechanisms.

Our informed buyers can “prove” they are informed in the same sense as Ben-
Porath et al. (2014). The main difference is that they assume that the social
choice function is known by all the players, while in our model the driving force is
the presence of buyers who are uninformed of the seller’s mechanism. They also
assume players have complete information about the state, but in our model only
buyers know their own valuations.

Finally, our informed buyers can pretend they are uninformed but not the other
way around. The one-sidedness of this incentive condition is similar to Denekere
and Severinov (2006), who study an optimal non linear pricing problem with a
fraction of consumers constrained to reporting their valuations truthfully. As in
our paper, a “password” mechanism could be used to separate ‘honest’ consumers
from “strategic” consumers who can misrepresent their valuations costlessly. In
our model, there aren’t truthful bidders in their sense of the term since uninformed
buyers can still misrepresent their values in our model.

5.2. Concluding remarks. In this paper we have considered a traditional mech-
anism design problem and modified it by assuming some buyers do not know the
mechanism the seller is using. We show that, assuming uninformed buyers don’t
communicate any useful information, the seller’s revenue optimal equilibrium can
be implemented with an equal priority auction. This mechanism is new as far as
we know. It lies nicely between the extremes of pure auction, which is best when
the seller is sure everyone is informed, and a simple take it or leave price offer to a
buyer chosen randomly.

One of the nice advantages of the equal priority auction is that it is parametric -
all equal priority auctions can be described using only 4 parameters, which makes
is easy to show existence. The parameters all lie in a compact set, and the payoff
functions are integrals which depend continuously on the parameters.

The parametric representation makes it possible to do computations, and in
principal, do empirical work. As we mentioned above, one of the implications of
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the the equal priority auctions is that the distribution of bids in the auction will
be endogenous. In particular, it will be bi-modal with high and low bids while
intermediate valuation bidders trade at a fixed price. This is something like what
happens on eBay, though eBay auctions differ in many ways from what we have
modeled here.

Perhaps a restrictive assumption we use is that buyers are either fully informed
or fully uninformed. A more reasonable assumption might be that buyers have
partial information about commitments. For example, we could assume that some
buyers may only be able to understand commitments to actions based on their
own messages, but not commitments that depend on the messages of others. If all
buyers have this type of partial information, then there is an equilibrium in which
the seller implements the optimal auction of Myerson (1981) through a first-price
sealed bid auction. This corresponds to the main result of Akbarpour and Li (2018),
who frame the issue of partial observability in terms of limited commitment by the
seller. When buyers have differential information about the seller’s commitments -
for example, if buyers either fully observe the seller’s commitment or only observe
the part based on their own message - we nonetheless believe that our basic insight
could be extended to this kind of assumption. Yet we are reluctant to pursue
without a better model of what buyers can and cannot understand.

6. Appendix: Omitted Proofs

Proof of Lemma 2.

Proof. First, an informed buyer with v < r never wins the auction, and thus the
expected payoff is 0, matching U ǫ(v) in (3.1) and (3.3) for v < r.

Second, an informed buyer with v ∈ [r, v−) wins the auction only when m = 0
and all n− 1 other informed buyers have valuation at most v, pays the maximum
of r and the second highest valuation. Thus, the expected payoff is

v(1− α)n−1Fn−1(v)−

(

r(1− α)n−1Fn−1(r) +

∫ v

r

w d
(

(1− α)n−1Fn−1(w)
)

)

.

By integration by parts, the above matches U ǫ(v) in (3.1) and (3.3) for v ∈ [r, v−).
Third, an informed buyer with v ∈ [v−, v+] wins the auction when m = 0 and

all n− 1 other informed buyers have valuation at most v−, and pays the maximum
of r and the second highest valuation. The contribution of this event to the buyer’s
expected payoff is

v(1− α)n−1Fn−1(v−)−

(

r(1− α)n−1Fn−1(r) +

∫ v−

r

w d
(

(1− α)n−1Fn−1(w)
)

)

=U ǫ(v−) + (v − v−)(1− α)n−1Fn−1(v−).

The buyer also wins the auction with probability 1/(m+ k + 1) when there are m
uninformed buyers, all n−m− 1 other informed buyers have valuation at most v+,
and m + k is at least 1 (where k is the number of informed buyers with valuation
on [v−, v+]), and pays v−. The contribution of this event to the buyer’s expected
payoff is

(v − v−)
(

χ(v−, v+)− (1− α)n−1Fn−1(v−)
)

.

The sum of the above two expressions matches U ǫ(v) in (3.1) and (3.3) for v ∈
[v−, v+].
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Fourth, for an informed buyer with v > v+ who wins the auction, he pays
the maximum of the second highest bid and the reserve price. When the second
highest bid is below v−, which implies that m = k = 0, the reserve price is r, and
the contribution to the expected payoff is

U ǫ(v−) + (v − v−)(1− α)n−1Fn−1(v−).

When the second highest bid is between v− and v+, which implies that m+ k ≥ 1,
the reserve price is (v− + v+(m + k))/(m + k + 1), and the contribution to the
expected payoff is

n−1
∑

m=0

B(m;n− 1, α)

n−1−m
∑

k=0

Bn−1−m
k (v−, v+)

(

v −
v− + v+(m+ k)

m+ k + 1

)

− (1− α)n−1Fn−1(v−)(v − v−)

=(v − v+)((1− α)F (v+) + α)n−1 + (v+ − v−)χ(v−, v+)− (1− α)n−1Fn−1(v−)(v − v−).

When the second highest bid w is above v+, which occurs with probability

n−1
∑

m=0

B(m;n− 1, α)(Fn−1−m(w)− Fn−1−m(v+)),

the buyer pays this bid, and so by integration by parts the contribution to the
expected payoff is

∫ v

v+

n−1
∑

m=0

B(m;n− 1, α)(Fn−1−m(w)− Fn−1−m(v+))dw

=

∫ v

v+

n−1
∑

m=0

B(m;n− 1, α)Fn−1−m(w)dw − (v − v+)((1− α)F (v+) + α)n−1.

The sum of the three expressions for the contributions to the expected payoff
matches U ǫ(v) in (3.1) and (3.3) for v > v+. �

Proof of Lemma 3.

Proof. Define

D(r, t, v−, v+) = U ǫ(v−)−Uµ(v−) =

∫ v−

r

(1−α)n−1Fn−1(w)dw−χ(v−, v+)(v−−t),

and let R be the revenue from the equal-priority auction. We have

∂D

∂r
= −(1− α)n−1Fn−1(r);

∂R

∂r
= −n(1− α)nFn−1(r)φ(r)f(r)

and

∂D

∂t
= χ(v−, v+);

∂R

∂t
= nαχ(v−, v+)π

′(t).
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If v− < v+, or if v− = v+ and dv− < 0, we have

∂χ(v−, v+)

∂v−
=

(1− α)f(v−)

(1− α)(F (v+)− F (v−)) + α

(

χ(v−, v+)− ((1− α)F (v−))
n−1
)

;

∂D

∂v−
= (1− α)n−1Fn−1(v−)− χ(v−, v+)−

∂χ(v−, v+)

∂v−
(v− − t);

∂R

∂v−
= n(1− α)((1− α)n−1Fn−1(v−)− χ(v−, v+))φ(v−)f(v−)

+ n((1− α)(π(v−)− π(v+)) + απ(t))
∂χ(v−, v+)

∂v−
.

If v− < v+, or if v− = v+ and dv+ > 0, we have

∂χ(v−, v+)

∂v+
=

(1− α)f(v+)

(1− α)(F (v+)− F (v−)) + α

(

((1− α)F (v+) + α)n−1 − χ(v−, v+)
)

;

∂D

∂v+
= −

∂χ(v−, v+)

∂v+
(v− − t);

∂R

∂v+
= n(1− α)

(

χ(v−, v+)− ((1− α)F (v+) + α)n−1
)

φ(v+)f(v+)

+ n((1− α)(π(v−)− π(v+)) + απ(t))
∂χ(v−, v+)

∂v+
.

If v− = v+ = v̂, we have

dχ(v̂, v̂)

dv̂
=

(1− α)f(v̂)

α

(

((1− α)F (v̂) + α)n−1 − ((1− α)F (v̂))n−1
)

;

∂D

∂v̂
= (1− α)n−1Fn−1(v̂)− χ(v̂, v̂)−

dχ(v̂, v̂)

dv̂
(v̂ − t);

∂R

∂v̂
= n(1− α)

(

(1− α)n−1Fn−1(v̂)− ((1− α)F (v̂) + α)n−1
)

φ(v̂)f(v̂) + nαπ(t)
dχ(v̂, v̂)

dv̂

= n(1− α)f(v̂)
(

((1− α)F (v̂) + α)n−1 − (1− α)n−1Fn−1(v̂)
)

(π(t)− φ(v̂)).

Let (r, t, v−, v+) be an optimal equal-priority auction. We first show that it is
interior.

Suppose that r = t < v− ≤ v+. Recall that U
ǫ(v) is strictly convex for v ∈ (r, v−)

while Uµ(v) is linear for v ∈ (t, v−). Since Qǫ(v) has an upward jump at v = v−,
we have U ǫ(v−) < Uµ(v−), violating the critical bidding condition (3.4).

Suppose that r < t = v− ≤ v+. We have U ǫ(v−) > Uµ(v−) = 0, and so the
critical bidding condition (3.4) is slack. Since r < t, we have r < r∗ or t > r∗, or
both. If r < r∗, then by raising r marginally, the seller could increase the revenue
because φ(r) < 0 implies ∂R/∂r > 0. If t > r∗, then by lowering t marginally, the
seller could increase the revenue because π′(t) < 0 implies ∂R/∂t < 0. With the
critical bidding condition (3.4) slack, we have a contradiction to the assumption of
optimality.

Suppose that r = t = v− ≤ v+. If r = t < r∗, then by raising t marginally, the
seller relaxes the critical bidding condition (3.4) because ∂D/∂t > 0, and increases
the revenue because π′(t) > 0 implies ∂R/∂t > 0. If r = t > r∗, then by lowering r
marginally, the seller relaxes the critical bidding condition (3.4) because ∂D/∂r < 0,
and increases the revenue because φ(r) > 0 implies ∂R/∂r < 0. If r = t = r∗ = v−,
then by lowering r marginally, the seller relaxes the critical bidding condition (3.4)
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because ∂D/∂r < 0, without changing the revenue because ∂R/∂r = 0. With
(3.4) slack, the seller could then increase the revenue by either further raising v−
marginally if v− = r∗ < v+, because φ(v−) = 0 implies ∂R/∂v− > 0, or by
raising both v− and v+ by the same infinitesimal amount if v− = v+ = r∗, because
∂R/∂v̂ > 0 when v̂ = r∗. In each case, we have a contradiction to the assumption
of optimality.

Suppose that r < t < v− = v+ = v̂. We have ∂D/∂v̂ < 0 and ∂R/∂v̂ < 0 has
the same sign as π(t) − φ(v̂). Thus, π(t) > φ(v̂): otherwise, by decreasing v− and
v+ by the same marginal amount, the seller relaxes the critical bidding condition
(3.4) without decreasing the revenue, which would then allow the seller to increase
the revenue by either raising r or lowering t, as r < t implies r < r∗ or t > r∗, or
both. Since φ(1) = 1, this implies that v̂ < 1. Now, consider perturbing the equal
priority auction by reducing v− from v̂ and raising v+ from v̂ such that

−(χ(v̂, v̂)− (1− α)n−1Fn−1(v̂))dv− = (((1− α)F (v̂) + α)n−1 − χ(v̂, v̂))dv+.

By construction,
∂χ(v̂, v̂)

∂v−
=

∂χ(v̂, v̂)

∂v+
.

This implies that the critical bidding condition (3.4) is relaxed, because

∂D

∂v−
dv− +

∂D(v̂)

∂v+
dv+ = ((1− α)n−1Fn−1(v̂)− χ(v̂, v̂))dv,

which is strictly negative. The seller’s revenue is unchanged, because

∂R

∂v−
dv− +

∂R

∂v+
dv+

=n(1− α)f(v̂)
(

χ(v̂, v̂)− (1− α)n−1Fn−1(v̂)
)

(π(t)− φ(v̂))dv−

+ n(1− α)f(v̂)
(

((1− α)F (v̂) + α)n−1 − χ(v̂, v̂)
)

(π(t)− φ(v̂))dv+,

which is equal to 0 by construction. The seller could now increase the revenue by
either raising r or lowering t, as r < t implies r < r∗ or t > r∗, or both. This
contradicts the assumption of optimality.

Now, we establish the first-order conditions stated in the lemma. To begin,
the critical bidding condition (3.4) binds at any optimal equal-priority auction.
Otherwise, since r < t implies that r < r∗ or t > r∗, or both, the seller could
increase the revenue by either raising r or lowering t, a contradiction to the assumed
optimality. Further, r < r∗ < t. Otherwise, if r∗ ≤ r < t, the seller could relax (3.4)
by lowering r marginally without decreasing the revenue, which then would allow
the seller to increase the revenue by lowering t. Similarly, if r < t ≤ r∗, the seller
could relax (3.4) by raising t marginally without decreasing the revenue, which then
would allow the seller to increase the revenue by raising r. Finally, π(t) > φ(v+).
Otherwise, by lowering v+ marginally, the seller relaxes (3.4) because ∂D/∂v+ < 0,
and increases the revenue, as ∂R/∂v+ has the same sign as

α(π(t)− φ(v+)) + (1− α)(π(v−)− π(v+))− φ(v+)(F (v+)− F (v−))

=α(π(t)− φ(v+))−

∫ v+

v−

(φ(v+)− φ(w))f(w)dw

<α(π(t)− φ(v+)),

contradicting the assumed optimality. Note that π(t) > φ(v+) implies v+ < 1.
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To obtain (3.7), consider perturbations dv− and dv+, while keeping r and t
unchanged. An optimality condition is that

∂R

∂v−
dv− +

∂R

∂v+
dv+ = 0,

for all perturbations dv− and dv+ satisfying

∂D

∂v−
dv− +

∂D

∂v+
dv+ = 0.

Thus we have
∂R/∂v−
∂D/∂v−

=
∂R/∂v+
∂D/∂v+

.

Using the expressions for χ(v−, v+), ∂χ(v−, v+)/∂v− and ∂χ(v−, v+)/∂v+, straight-
forward algebra lead us to the first-order condition (3.7) for an optimal equal-
priority auction with respect to v− and v+. Note that (3.7) implies that

∂R/∂v+
∂D/∂v+

= −n(1− α)(φ(v+)− φ(v−))f(v−).

Next, to obtain (3.8), consider perturbations dt and dv+. The resulting optimal-
ity condition is

∂R/∂t

∂D/∂t
=

∂R/∂v+
∂D/∂v+

.

This gives the first order condition (3.8) with respect to t and v+.
Lastly, to obtain (3.9), consider perturbations dr and dv+, while keeping t and

v− unchanged. The resulting optimality condition is

∂R/∂r

∂D/∂r
≥

∂R/∂v+
∂D/∂v+

,

and r ≥ 0, with complementary slackness. This gives the first-order condition

−φ(r)f(r) ≤ (φ(v+)− φ(v−))f(v−),

and r ≥ 0, with complementary slackness. Note that −φ(0)f(0) = 1. Since φ(v+) <
π(t) and t > r∗, we have φ(v+) < π(r∗) < r∗, while v− > t > r∗. Thus,

(φ(v+)− φ(v−))f(v−) = (φ(v+)− v−)f(v−) + 1− F (v−) < 1.

It follows that the optimal r is interior and so (3.9) holds. �

Proof of Lemma 4.

Proof. Fix a direct mechanism {qǫm, pǫm}
n−1
m=0 and {qµm, pµm}

n

m=1. Define pµ ∈ [0, 1]
to be the expected offer to uninformed buyers, given by

n−1
∑

m=0

B(m;n− 1, α)Ev{q
µ
m+1(v)(p

µ − pµm+1(v))} = 0.

Since pµm(v) ∈ [0, 1] for all v,

n−1
∑

m=0

B(m;n− 1, α)Ev{q
µ
m+1(v)}max[w − pµ, 0]

=
n−1
∑

m=0

B(m;n− 1, α)Ev

{

qµm+1(v)max[w − pµm+1(v), 0]
}
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for all w ≤ min pµm(v) and for all w ≥ max pµm(v). Since Uµ(w) is convex in w, we
have

Uµ(w) ≥
n−1
∑

m=0

B(m;n− 1, α)Ev{q
µ
m+1(v)}max[w − pµ, 0]

for all w. Thus, replacing each all functions {pµm(·)}nm=1 with pµ reduces the devi-
ation payoff of an informed buyer from pretending to be uninformed. The seller’s
revenue from uninformed buyers is

n
∑

m=1

B(m;n, α)Ev {mqµm(v)π (pµm(v))} = nα

n−1
∑

m=0

B(m;n−1, α)Ev

{

qµm+1(v)π
(

pµm+1(v)
)}

.

The lemma then follows from the strict concavity of π(·). �

Proof of Theorem 5.

Proof. Suppose that {r, t, v−, v+} is a revenue maximizing equal priority auction.
By Lemma 3, the first order conditions (3.7)-(3.9) are satisfied. We construct
a non-negatively valued multiplier function λ(w) for all w ∈ [0, 1] such that the

allocative rule (qǫm)
n−1
m=0 and (qµm)

n

m=1, together with the offer to uninformed pµ

defined by {r, t, v−, v+} solves the Lagrangian relaxation. By Lemma 2, the trans-
fer rule we have specified for an equal priority auction supports a truthful bid-
ding equilibrium among informed buyers. Thus we have found a direct mechanism
{

(qǫm, pǫm)
n−1
m=0 , (q

µ
m, pµm)

n

m=1

}

that point-wise maximizes the Lagrangian.

For each w ∈ [0, 1], denote

Kǫ(w) = n(1− α)φ(w) +

∫ 1

w

λ(x)dx/f(w);

Kµ = nαπ(pµ)−

∫ 1

0

λ(x)max[x− pµ, 0]dx.

We can then rewrite the Lagrangian as

(1− α)n−1

∫ 1

0

Kǫ(w)Qǫ
0(w)f(w)dw + αn−1Kµqµn

+

n−1
∑

m=1

(
∫ 1

0

B(m;n− 1, α)Kǫ(w)Qǫ
m(w)f(w)dw +B(m− 1;n− 1, α)KµQµ

m

)

,

where Qǫ
0(w) is the probability that an informed buyer with valuation w gets the

good when all buyers are informed, and qµn is the probability that each uninformed
buyer gets the good when all buyers are uninformed.

Now we construct λ(·) as follows. Let λ(w) = 0 for all w 6∈ [v−, v+], and let

λ(w) =n(1− α)
d

dw
(f(w)(φ(w)− φ(v+)))

=n(1− α)(2f(w) + f ′(w)(w − φ(v+)))

for all w ∈ (v−, v+), with λ(v−) and λ(v+) given by the corresponding limit from
above and from below. Since by assumption π(·) is strictly concave, f(w)φ(w) is
strictly increasing in w, and thus λ(w) > 0 at any w ∈ [v−, v+] such that f ′(w) ≤ 0.
By (3.7) we have φ(v+) < π(t) < π(r∗) < r∗. Since w ≥ v− > t > r∗, we have
λ(w) > 0 at any w ∈ [v−, v+] such that f ′(w) > 0. Thus, λ(w) as constructed is
non-negative for any w.
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We will first show that pµ = t maximizes the Lagrangian. For any w ∈ [v−, v+],
by construction

∫ 1

w

λ(x)dx = n(1− α)f(w)(φ(v+)− φ(w)).

Using integration by parts, we have
∫ 1

0

λ(w)max[w − pµ, 0]dw

=−

∫ v+

v−

(w − pµ) d

(
∫ 1

w

λ(x)dx

)

=n(1− α)

(

(v− − pµ)f(v−)(φ(v+)− φ(v−)) +

∫ v+

v−

f(w)(φ(v+)− φ(w))dw

)

=n(1− α) ((v− − pµ)f(v−)(φ(v+)− φ(v−)) + φ(v+)(F (v+)− F (v−))− (π(v−)− π(v+))) .

By (3.7), we have

Kµ = nαφ(v+) + nα(π(pµ)− π(t)) + (pµ − t)n(1− α)f(v−)(φ(v+)− φ(v−)).

The above is strictly concave in pµ. By (3.8), it is maximized at pµ = t, and thus

Kµ = nαφ(v+).

The remainder of the proof establishes that the direct mechanism (qǫm)
n−1
m=0,

(qµm)
n

m=1, and pµ = t defined by {r, t, v−, v+} is a point-wise maximizer of the
Lagrangian relaxation. For w ∈ [v−, v+], we have

B(m;n− 1, α)

n−m
Kǫ(w) =

B(m− 1;n− 1, α)

m
Kµ.

For all w > v+, since π(·) is strictly concave,

Kǫ(w) = n(1− α)φ(w) > n(1− α)φ(v+) = Kǫ(v+),

and so
B(m;n− 1, α)

n−m
Kǫ(w) >

B(m− 1;n− 1, α)

m
Kµ.

For all w < v−,

Kǫ(w) = n(1− α)φ(w) +

∫ v+

v−

λ(x)dx/f(w)

= n(1− α)(φ(w) + f(v−)(φ(v+)− φ(v−))/f(w)).

We claim that

φ(w) +
f(v−)(φ(v+)− φ(v−))

f(w)
< φ(v+)

for all w < v−, and thus Kǫ(w) < Kǫ(v+) and

B(m;n− 1, α)

n−m
Kǫ(w) ≤

B(m− 1;n− 1, α)

m
Kµ.

To establish the claim, recall that in showing that the constructed multiplier func-
tion λ(w) is positive for w ∈ [v−, v+], we have proved that f(w)(φ(w) − φ(v+)) is
strictly increasing in w for all w ≥ φ(v+). This immediately implies that the claim
holds for any w ∈ [φ(v+), v−). For w < φ(v+), we have

f(w)(φ(w)−φ(v+)) = f(w)(w−φ(v+))−(1−F (w)) < −(1−F (w)) < −(1−F (r∗)),
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where the last inequality follows because φ(v+) < π(t) < π(r∗) < r∗, while

f(v−)(φ(v+)− φ(v−)) < f(r∗)φ(v+) < f(r∗)r∗,

where the first equality comes from f(w)(φ(w)−φ(v+)) being strictly increasing in
w for all w ≥ φ(v+). The claim then follows from the definition of r∗.

To show that the direct mechanism defined by the equal-priority auction {r, v−, v+, t}
is a point-wise maximizer of the Lagrangian, we dis aggregate Qm(w) and write the
Lagrangian as

(1− α)n−1

∫ 1

0

Kǫ(w)Qǫ
0(w)f(w)dw + αn−1Kµqµn+

n−1
∑

m=1

Ev

{

B(m;n− 1, α)

n−m

n−m
∑

i=1

Kǫ(vi)q
ǫ
m(ρim(v)) +B(m− 1;n− 1, α)Kµqµm(v)

}

.

Fix any realized number m of uninformed buyers such that 1 ≤ m ≤ n − 1,
and consider the last term in the above objective function. Suppose that for some
realized valuation profile v we have vi > v+ for some i = 1, . . . , n−m, but qµm(v) > 0.
By (2.2), we can decrease qµm(v) marginally by dqµm(v) > 0 and increase qǫm(ρim(v))
by mdqµm(v). Since

m

n−m
B(m;n− 1, α)Kǫ(vi) > B(m− 1;n− 1, α)Kµ,

the effect on the seller’s revenue is strictly positive. Therefore, qµm(v) = 0 for any
v such that vi > v+ for some i = 1, . . . , n − m. Further, since Kǫ(w) is strictly
increasing for w > v+, we have qǫm(ρim(v)) = 1 for vi = max[v1, . . . , vn−m]. Finally,
since

B(m;n− 1, α)

n−m
Kǫ(w) ≤

B(m− 1;n− 1, α)

m
Kµ.

for all w ≤ v+, with equality if w ∈ [v−, v+], if v is such that max[v1, . . . , vn−m] ≤
v+, there is a maximizer of the Lagrangian such that qǫm(ρim(v)) = 0 whenever
vi < v−, and qǫm(ρim(v)) = qµm(v) if vi ∈ [v−, v+].

For m = 0 and the first term in the Lagrangian, the strict concavity of π(·) im-
pliesKǫ(w) for w < v− crosses 0 at most once and only from below. Thus, for r that
satisfies (3.9), it is point-wise maximizing to set qǫ0(ρ

i
0(v)) = 1 if vi = max[v1, . . . , vn]

and vi > v+, or if vi = max[v1, . . . , vn] and vi ∈ [r, v−); set qǫ0(ρ
i
0(v)) = 1/k if

vi ∈ [v−, v+], max[v1, . . . , vn] ∈ [v−, v+] and #{j : vj ∈ [v−, v+]} = k; and set
qǫ0(ρ

i
0(v)) = 0 otherwise.

For m = n and the second term in the Lagrangian, we have qµn = 1/n because
Kµ > 0. �
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