
A FOLK THEOREM FOR COMPETING MECHANISMS

MICHAEL PETERS
UNIVERSITY OF BRITISH COLUMBIA

AND CRISTIAN TRONCOSO VALVERDE
UNIVERSIDAD DIEGO PORTALES MANUEL RODRÍGUEZ

Abstract. We provide a partial characterization of the set of out-
come functions that can be supported as perfect Bayesian equilib-
rium in the recommendation game described in Yamashita (Econo-
metrica 2010). We show that the set of outcome functions that can
be supported is at least as large as the set supportable by a mech-
anism designer in the sense of Myerson (Myerson 1979). We show
how to support random and correlated outcomes as equilibrium
outcomes in the recommendation game.

Many outcome functions can typically be supported as equilibria
in competing mechanism games. Some of these outcomes look quite
’collusive’. The reason for this is that competing mechanism games
often provide players the opportunity to make what they do conditional
on what other players do. This allows players to support collusive
outcomes by writing contracts that commit them to react whenever an
opponent deviates from a putative equilibrium outcome. A complete
characterization of supportable outcomes in regular contracting games
is provided in Peters (2010). He shows that an equilibrium outcome
function is supportable as a perfect Bayesian equilibrium in a regular
contracting game only if it is supportable in a particular reciprocal
contracting game in which players contracts condition directly on other
players’ contracts.

In most of the literature on common agency and competing auctions,
contracts cannot condition directly on other contracts. It is natural to
ask whether this feature could be used to limit the large set of sup-
portable outcomes. Yamashita (2010) suggested a contracting game in
which contracts condition on one another indirectly through commu-
nication with agents. The logic of his game is straightforward. Each
principal commits to a mechanism that simply asks agents what he
should do. If the majority of the agents’ recommendations agree, the
principal commits himself to carry out the recommendation.
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To support some cooperative outcome function as an equilibrium,
principals offer recommendation mechanisms, and on the equilibrium
path, agents unanimously recommend that each principal carry out his
part of this cooperative outcome. Should any principal deviate and
try to offer something other than a recommendation mechanism, the
agents unanimously recommend that the others punish the deviator.
The reason the agents are willing to do this is because they expect all
the other agents to do it, and believe they will be ignored if they don’t
do likewise.

In addition to the fact that contracts can’t condition directly on one
another, Yamashita’s recommendation game also requires that players
communicate their messages privately. The Yamashita game has the
same restrictions on players’ ability to write contracts as does the ex-
isting literature on common agency and competing auctions. What is
perhaps surprising about our result here, is that restricting contracts
so that they obey the same communication restrictions as the standard
literature provides essentially no restrictions on the set of supportable
outcomes.

There are a number of reasons we need to write a paper on this
instead of referring to Yamashita. First of all, though he explains per-
fectly well how competing mechanisms can be used to support multiple
outcomes, he doesn’t provide an explicit theorem characterizing the
things that are supportable. Characterization isn’t really the point of
his paper. When he describes what a characterization might look like,
he describes a ’value’ that imposes a lower bound on principals’ payoffs
from supportable outcomes. This ’value’ is the lowest payoff that the
principal attains from any mechanism he can offer in any continuation
equilibrium against any array of mechanisms of the other players. Since
the calculation of these values basically requires the calculation of all
equilibrium strategy rules, the ’characterization’ is really nothing more
than a restatement of the definition of equilibrium. So our primary
objective in this paper is to turn this argument into a representation
that can be used to compare his result to the rest of the literature.

One of the difficulties that arise in doing this is that Yamashita re-
stricts players to pure strategies and non-random mechanisms. This
is sensible for expositional reasons in his paper, but here we want
to illustrate formally how to handle randomization. One benefit of
our approach is that it shows how principals can use recommendation
mechanisms to implement correlated actions.
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The second difficulty has to do with private communication. What
agents ’recommend’ to principals in Yamashita’s game is a direct mech-
anism. In the course of the operation of this direct mechanism a princi-
pal communicates privately with each of this agents, which determines
the principal’s own action. We show how to tie these private commu-
nications together in such a way that principals can coordinate their
action choices.

Finally, Yamashita limits commitment ability to a group of unin-
formed principals who deal with informed agents who have no com-
mitment power at all, and who make no direct choices beyond the
messages that they send to principals. We show how to extend his ap-
proach to problems with informed principals and to situations in which
all participants have commitment power.

Our main result is to show that if the game has enough players,
every outcome function that is implementable in the sense of Myerson
(1979) is also supportable as an equilibrium in this game. For complete
information games, the set of joint mixtures over actions for which
each player receives at least his minmax payoff it equivalent to the
set of outcomes supported as equilibrium in Yamashita’s game. In
one sense this extends the results in Kalai, Kalai, Lehrer, and Samet
(2010) to arbitrary numbers of players. However, this extension is done
without using the same kind of commitment device that they did.1 For
the more interesting case of incomplete information, we show that the
set of supportable outcomes is at least as large as the set of outcome
functions supportable by a centralized mechanism designer. The set
of supportable outcomes can be strictly larger because Yamashita’s
game allows players to recommend punishments that depend on what
the deviator chooses to do.2 This makes no difference in games of
complete information where the max min and min max coincide when
punishments can be correlated in the way we allow here. However,
for the case of incomplete information this generally makes it possible
to players to implement more severe punishments than a centralized
planner could. We discuss this in more detail below.

1. Fundamentals

There are n ≥ 7 players. We sometimes write N to represent the
set of players. Player i must choose an action ai from a finite set Ai.

1As in Peters (2010), they use commitment devices that condition on other com-
mitment devices.

2In the terminology of Peters (2010), Yamashita’s game isn’t regular.
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Let a = {a1, . . . , an} be an array of actions in A = A1 × · · · × An.
A−i =

∏

j 6=i Aj.
Each player i has a privately observed payoff type θi drawn from a

finite set Θ. Payoffs are given by ui : A × Θn → R. Players have
expected utility preferences over actions.

Let Pi, P−i, and P be the set of probability distributions on Ai, A−i,
and A respectively. A typical element p ∈ P is a vector with pk equal
to the probability that the kth element in A occurs, where the set A is
indexed in some arbitrary fashion.

Let q : Θn → P be an outcome function. In what follows we slightly
abuse notation by writing ui (q, θ) instead of

∑

a∈A qaui (a, θ). We are
interested in allocation rules that are incentive compatible and individ-
ually rational. Incentive compatibility means

(1.1) E {ui (q (θ) , θ) |θi} ≥ E {ui (q (θ′i, θ−i) , θ) |θi}

for each i ∈ N , and θ′i ∈ Θi. Individual rationality means that for each
player i there is a punishment pi : Θ−i → P−i such that for every θi

E {ui (q (θi, θ−i) , (θi, θ−i)) |θi} ≥

(1.2) max
ai

E
{

ui

(

ai, p
i (θ−i) , (θi, θ−i)

)

|θi

}

.

With complete information, an allocation is individually rational if and
only if it provides each player with an expected payoff that exceeds his
or her minmax value, defined for player i as

(1.3) u∗
i ≡ min

p−i∈P−i

max
ai∈Ai

ui

(

ai, p
i
)

.

Again, with complete information the punishment

p∗−i ∈ arg min
p−i∈P−i

max
ai

ui

(

ai, p
i
)

can be used to support all implementable allocations.
Notice that when constructing a punishment, or a minmax value,

punishers are allowed to correlate their punishments. This is appropri-
ate for a mechanism designer who can enforce contracts and correlate
actions among agents who have agreed to participate.

2. Recommendation Game

One of the things that makes competing mechanism games chal-
lenging is specifying exactly what message spaces and mechanisms are
feasible for players. Since our objective here is to study the implica-
tions of private communication, we use a very narrow interpretation of
what the set of feasible mechanisms is.
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Our game takes place in two stages. Players can make commitments
that are based on public messages in the first stage, and on private
communication that occurs during both stages. In the first stage, every
player publicly announces such a commitment, declares a second public
message, then sends private messages to the other players. In the
second stage all messages are private. As is almost universally assumed
in mechanism design, messages are verifiable, even though they are
private.

Our mechanisms are unusual in two basic ways. First, they are not

direct mechanisms. Players don’t directly convey their type informa-
tion. Of course they are going to do so indirectly. Second, players
cannot make arbitrary commitments based on the messages they re-
ceive. We are going to give players the ability to refuse to participate
in a principal’s mechanism.

Since play necessarily involves indirect mechanisms, we need to de-
scribe the message spaces.

Encryption. Players are going to encrypt their type information be-
fore they publish it. To see how, begin with a publicly known algorithm
E , a measurable set K, along with a non-informative prior probability
measure on K. The elements of K are referred to as encryption keys.

The algorithm E converts elements of (Θ × [0, 1]) × K × K into a set
M̃. The elements of M̃ are referred to as encrypted messages. Finally
the elements in [0, 1] are referred to as correlating messages. Their role
is explained below.

We assume without further comment that the encryption algorithm
works in the most desirable way. For example it has the property that
for every m̃ ∈ M̃, every (θ, x) ∈ Θ × [0, 1] and every k ∈ K, there is
a k′ ∈ K such that E ((θ, x) , k, k′) = m̃. In words, no information is
provided about the encrypted value m̃ from only a single encryption
key.

On the other hand, a player who has both the encryption keys should
be able to decrypt, so we assume that for every m̃ ∈ M̃ and (k, k′) ∈
K×K, either there is a unique pair (θ, x) such that m̃ = E ((θ, x) , k, k),
or there is no pair for which this equality holds.3

Indirect Mechanisms. The public message m̃ ∈ M̃ that each player
announces in the first period is essentially an encrypted version of his

3For example, suppose one wants to encrypt the real number z. Let the keys be
in K1 = K2 = R, and suppose the algorithm γ is given by xyz. The number m̃

is the encrypted value of z. Given the keys x0 and y0, the decrypted value of z is
z̃

x0y0

. If you only know x0, then z could still be any real number.
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type. To decrypt this information, players need to know the keys that
were used to create m̃. The keys are conveyed privately. In the first
period, each player sends a key in K to each of his opponents. In the
second period, each player tells each player what keys were reported to
him in the first period. Since each player received one key from each of
his n−1 opponents in the first period, he conveys n−1 keys to each of
his opponents in the second period. This means that at the end of the
second period, each player has received (n − 1) reports, each of which
contains (n − 1) keys, along with the n− 1 keys that were reported to
him in the first period. In other words, he has a total of n (n − 1) keys
that he can use to try to decrypt the public messages.

Let Γi be the set of indirect mechanisms consisting of measurable
mappings from M̃n × Kn(n−1) into Ai. Standard competing mecha-
nism games like competing auctions or common agency would simply
allow players to commit directly to these mechanisms. What these
mechanisms are missing is some way for players to communicate their
market information to one another as in Epstein and Peters (1999).
The basic insight in Yamashita (2010) about how to do this is to add
one additional message from each of the players who might participate
in a mechanism consisting of a recommendation to the principal about
which indirect mechanism in Γi the mechanism designer should use.
We are now able to describe these.

Recommendation Mechanisms. Now we want to expand the mes-
sage space that player i can condition on to Γn−1

i × M̃n × Kn(n−1), so

that it includes not just the public messages in M̃n and key reports
in Kn(n−1), but also a set of recommendations that the others make
about how player i should use these mechanisms. An alternative way
to think about these messages is that they represent the mechanisms
that the other players expect player i to use. This is the suggestion in
Yamashita (2010).

To get the characterization we want, we are going to impose a re-
striction on what mechanisms are enforceable. In particular, we assume
that mechanisms are only enforceable when players jointly agree to par-
ticipate. Joint agreement occurs when all but possibly one of the other
players sends the same recommendation.

To define this formally, let U (γi) be the number of distinct elements
in the vector γ−i. The set of feasible mechanisms is then defined to be

Ri ≡

{

r : Γn−1
i × M̃n × Kn(n−1) → Ai;U (γ−i) > 2 =⇒
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r
(

γ−i, m̃, k̃
)

= r
(

γ−i, m̃
′, k̃′

)

∀
(

m̃, k̃
)

,
(

m̃′, k̃′
)

∈ M̃n × Kn(n−1)
}

.

No player can commit to actions that depend on the public and private
messages unless other players agree to participate by sending the ’same’
recommendations. Notice that this does not require that players follow
recommendations. For example, if all the others recommend that player
i simply take action ai, then i can commit to any mechanism that
depends on public and private messages. No player can unilaterally
veto i’s ability to commit since commitments are still valid when there
are two distinct recommendations. However, players can jointly refuse
to participate in i’s mechanism by sending random recommendations.

The point of Yamashita (2010) is to explain how these recommen-
dations can be used to fully capture the idea that agents have market
information to convey to the principal. The way they do this is to make
joint recommendations based on whether or not they have seen some
player deviate from some putative equilibrium.

The Recommendation Game is a competing mechanism game in
which players simultaneously announce mechanisms in R along with
their encrypted types. At the same time, they then send private mes-
sages revealing information about their encryption keys to the others.
Then, as in any competing mechanism game, the other players send
private messages which determine each players actions. We are inter-
ested in the perfect Bayesian equilibrium of the recommendation game.
A perfect Bayesian equilibrium is a set of sequentially rational strategy
rules and beliefs that satisfy Bayes rule when possible.4

3. Theorem

At this point we can state our main theorem:

Theorem 1. If there are 7 or more players, then an allocation rule can

be supported as a perfect Bayesian equilibrium in the recommendation

game if it is incentive compatible and individually rational.

It is important to point out what this theorem adds to the logic
in Yamashita. Most obviously it covers random, and even correlated
outcomes that could not be captured because of the pure strategy non-
random mechanism assumptions in Yamashita. Secondly, it extends
the characterization from the uninformed principal informed agents
framework to an environment in which there are informed principals.
It covers common agency provided there are seven or more principals.
Common agency is ruled out by Yamashita’s approach since he relies on

4This is sometimes called a weak perfect Bayesian equilibrium.
7



multiple agents to coordinate report. It also admits problems in which
bargaining power is evenly distributed among players. At the most
fundamental level, it provides a characterization in the form of a set
of inequalities, which Yamashita’s paper does not do, as we explained
above.

Secondly, the characterization result supports the usual Bayesian in-
dividual rationality condition in which punishments do not have to be
incentive compatible. This is true even though the solution concept
used to describe equilibrium requires sequential rationality - as does
Yamashita. The way this is accomplished is by making two modifi-
cations to Yamashita’s game. One is to have each player announce
their type before they learn whether or not they will be engaged in a
punishment by having them publish encrypted type reports in the first
period. The second is to allow players to jointly veto a mechanism by
sending different recommendations to a player. This prevents a deviat-
ing player from committing to a mechanism that depends on the types
of the non-deviators. The deviator has no better option than to choose
his action as best he can given the anticipated punishment. Effectively,
subgame perfection imposes no restrictions on the set of implementable
punishments.

Of course, Yamashita’s point is not to provide a characterization in
the first place. It is simply to show how recommendation mechanisms
work. Our model goes beyond this. We start with the set of incentive
compatible individually rational allocation rules, then show how to
implement all of them.5

The proof involves a number of detailed constructions, so we sketch
the way it works here. The novel parts involve randomizing and cor-
relating the actions of players who make independent commitments,
explaining why players can implement type contingent punishments
that aren’t incentive compatible, and explaining how the very ’indrect’
mechanisms that we have described are converted into something that
looks more like a standard direct mechanism.

Begin with the encrypted types that players publish in the first pe-
riod. We want other players to be able to use this type information
when they choose their own action. As we have described, we allow
players to privately send encryption keys to some of the other players
in the first period. The whole point of this exercise is to have players
declare their types before they know whether or not there has been a

5Even if we don’t know what these allocation rules are, it seems a far easier
problem to calculate them for some environment than it does to find all mechanisms
which have pure strategy continuation equilibrium.
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deviation. If players believe they will remain on the equilibrium path,
they want to convey their types truthfully to all the other players sim-
ply because the outcome function that they expect to be implemented
along the equilibrium path is incentive compatible. Once they realize
there has been a deviation and they will be punishing, they might want
to lie about their types, since we haven’t required the punishment to
be incentive compatible. However, if the non-deviators have followed
their equilibrium strategy, they will already have published their true
type and sent out the encryption keys the other players need to decode
it.

Once the second period comes along, the players recognize whether
or not there has been a deviation that pulls them off the equilibrium
path. Then we simply extend the Yamashita idea not just to recom-
mendations, but also to reports about encryption keys. Since the other
players are expected to report keys truthfully and make a common rec-
ommendation, players might as well do the same since the mechanisms
we construct explicitly ignore unilateral deviations in reports.

The key to making this work is then to have at least three play-
ers making recommendations and reports about relevant information.
Since players don’t want to reveal their type information to any of the
other players in the first period, they send out two sets of encryption
keys which can only be used together to decrypt the types. Each player
must then report each of his two encryption keys to three players. This
is why we have 7 players - the sender and 6 receivers.

Once we have convinced players to send out the right encryption keys
in the first period, we design a mechanism that uses the decrypted val-
ues of players types and correlating reports to choose actions. We
correlate the actions using a mixing device from Kalai, Kalai, Lehrer,
and Samet (2010) which shows how to use uniformly distributed cor-
relating messages to do this. To show that players are happy to choose
their correlating messages uniformly, we extend the proof of this fact
from Kalai, Kalai, Lehrer, and Samet (2010) to the situation where
there is an arbitrary number of players.

4. Proof: Some Preliminary Ideas.

Our proof combines a number of ideas. We borrow methods from
computer science to implement correlated and random outcomes. We
then develop a sequential communication mechanism that effectively
converts private communication into a public correlating device. We
explain each of these methods before we proceed to the proof of the
main theorem.
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4.1. Implementing random outcomes with non-random con-

tracts. The set of all profiles of actions, A, is a finite set. Suppose
that it has κ elements in all. Give each profile a ∈ A an arbitrary
index l, so that the set of profiles is indexed from 1 to κ. Let π be
a vector of κ probabilities that sum to one, with πa being interpreted
as the probability assigned to profile a. Let x̃ be a random variable
uniformly distributed on [0, 1]. The randomizing function απ (·, A) is
defined by

(4.1) απ (x̃, A) =

{

al ∈ A : l = min
l′∈{1,...,κ}

l′
∑

i=1

πi ≥ x̃

}

.

For any profile al, this randomizing function takes value al with prob-
ability πal

.
Let απ

i

(

t̃, A
)

be the projection of α onto Ai - in words, απ
i takes

value ai ∈ Ai whenever the ith coordinate of απ
(

t̃, A
)

is equal to ai.
From the definition, it is immediate that

(4.2)
{

απ
1

(

t̃, A
)

, . . . , απ
n

(

t̃, A
)}

= απ
(

t̃, A
)

.

In other words, if we want players to implement a profile of actions
a with probability πa, then we can do it by showing them a common
correlating device t̃ and having them each take action απ

1

(

t̃, A
)

,
This idea is taken from Kalai, Kalai, Lehrer, and Samet (2010) who

explain the idea in two player games. This is why the correlating
messages appear along with type in our formulation. The correlating
messages are ultimately used to carry out the randomization as in (4.1).
To get this randomization to work. We next have to find some way to
ensure that players are happy sending uniformly distributed correlating
messages. We turn now to this problem.

4.2. A property of uniform distributions. For any non-negative
real number x, ⌊x⌋ means the fractional part of x (sometimes the ter-
minology is x mod 1). Let x̃1, . . . , x̃n be a collection of n independent
random variables, where each x̃i is uniformly distributed on [0, 1]. For
n ≥ 2, fix x̃i = x for some i. Then ⌊x +

∑

j 6=i x̃j⌋ is a random variable.

This random variable turns out to be uniformly distributed on [0, 1]
independent of x̄. 6 Since this argument proves very useful below, we
give a simple proof in the Appendix section 8.1.

6This appears to be conventional wisdom in statistics. The theorem is referred to
in Deng and E.Olusegun (1990). A proof that the sum mod 1 of a pair of random
variables on [0, 1] is uniform as long as at least one of the random variables is
uniform is given in Deng, Lin, Wang, and Yuan (1997), Theorem 3.1 (see especially
the comment after the theorem).
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An immediate corollary is the following result, which will be used
extensively below:

Lemma 2. Suppose that {x̃1, . . . , x̃n} are all independently and uni-

formly distributed on [0, 1] and π a vector of probabilities assigned to

each element of A. Then the probability distribution

απ

(

⌊x̃i +
∑

j 6=i

x̃j⌋

)

is independent of x̃i.

The way we use this is to imagine that we want to implement a
randomization over profiles of actions in A which assigns probability
πk to the profile ak. Then we can do it by asking each player to name

a number in [0, 1], then implementing the action απ
(

⌊x̃i +
∑

j 6=i x̃j⌋
)

.

If every player thinks the others are choosing numbers using a uniform
distribution, then no player thinks he can influence the probability
distribution over outcomes by doing anything else.

4.3. Confirmation Process. Now we turn to the hard part of this
problem, which is to ensure that when players communicate privately,
they all end up with the same information. In particular, we want every
player to condition on the same value for every other player’s type. Also
to implement randomized outcomes as above, we need to do something
to ensure that every player communicates the same randomizing device
to every other player.

This is accomplished in part by forcing players to commit themselves
by publicly announcing messages in the first period. However, the last
thing we want is for players to announce their types publicly. In an
environment like that, most players would simply wait around to see
the type reports then best reply against them. It would be hard for
the players to sustain any kind of cooperation in that case.

This is the point of the encryption. The complicated part is to get
the players to reveal their keys to all the others. Since they convey
these keys privately, there is nothing to guarantee that they reveal the
correct keys, or that they send the same keys to all players.

What we want to show is that in our game, there will always be
a perfect Bayesian equilibrium in which each player reveals the same

encryption key to each player in a group consisting of at least 3 of the
other players. Ultimately, this will be enough for us to show that there
is always and equilibrium in which each player recovers all of the en-
cryption keys and that players convey their encryption keys truthfully.
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We can illustrate the procedure we are going to use with an example.
Suppose that player i has three different types, and wants to implement
one of three different actions {a1, a2, a3}. A player of type ti strictly
prefers action ai to the other two no matter what his opponents do, but
he does better with these actions if his opponents don’t know his type.
He wants to commit himself to a type contingent action (and wants the
players to know he is committed) but doesn’t want to reveal his type.
The way he would do it is to publicly announce his encrypted type m̃,
using a pair of keys (k, k′)to encrypt it. He would then privately reveal
k to a group G+of his opponents consisting of at least 3 players. He
would privately reveal the second key k′ to another group G− consisting
of three completely different players. He can report any key he likes
to players who aren’t in either G+ or G−. Even if he reveals the keys
truthfully, none of the players has enough information to decrypt m̃

from the single key report they have heard
He should then commit himself to a mechanism that chooses an

action based reports the other players provide him in the second period
about the encryption key he reported to them in the first period. The
commitment should work the following way: If at least two of the
three players in group G+ report the same key k̃ and at least two of
the three players in G− report the same key k̃′, then he should commit

himself to the action at̃ where t̃ = γ−1
(

m̃, k̃, k̃′
)

if γ−1
(

m̃, k̃, k̃′
)

∈

{t1, t2, t3} and to action a1, say, otherwise (recall that γ is the publicly
know encryption algorithm). It should be clear from this example
that there is an equilibrium where each of his opponents reports the
key they received accurately in the second period because they believe
that player i reported the same key to each of the other two players,
and because they believe the other two players are both going to report
truthfully. The same argument goes for the second group.

Since the two keys together identify the type and lead to the right
commitment, player i has no incentive to lie about his type or to trans-
mit different keys to different players. This is the method we are going
to use to ensure players transmit their encryption keys accurately -
they are going to commit themselves to mechanisms that give them
the right incentives to do so.

Recall that in the first period, players privately send keys to their
opponents. For each player i, let G+

i and G−
i be arbitrary disjoint

subsets of i’s opponents consisting of exactly 3 players each (which
explains why we need 7 players to make this argument work). The
members of these two sets will hear real messages from player i, the
other players will hear a message chosen completely randomly. These
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sets are part of the description of an equilibrium, but for the moment
assume they are common knowledge among the players.

The point of the whole exercise is to decrypt the messages the players
announced in the first period in order to discover their type and corre-
lating messages. Since each player receives a total of n (n − 1) messages
that are supposed to convey information about the encryption keys, he
faces the problem of distilling this information down to exactly 2n (or
n pairs) of keys that he can use to decrypt public messages. Call this
process τ and observe that it is a mapping from Kn(n−1) into K2n.

Now adopt the following notation: let k̃1
j represent the private mes-

sage that player i receives from player j in the first round. Let k̃2
jm

represent the second round report that player j makes to i about the
key he received from player m in the first round. Observe that the mes-
sage k̃2

ji would be j’s report about what i told him in the first round.
This message is important in what follows despite the fact that i al-
ready knows what report he made to j in the first round. To see why,
just consider the simple example given above where the mechanism de-
signer has three actions and three types. By committing himself to act
in a sensible way only when his agents report the same information, he
effectively commits himself to send each of them the same information.
Since the principal acts when agents messages confirm each other, we
refer to this as a confirmation process.

Let k̃1
−i represent the vector of reports that i receives from the other

players in the first period, and k̃2
−i the vector of reports that i re-

ceives in the second period. A confirmation process converts the vec-

tors
(

k̃1
−i, k̃

2
−i

)

into exactly 2n encryption keys. For a pair of vectors

k̃1
−i and k̃2

−i of first and second period reports to i, and a subset G+
j of

3 players other than j, define

MAJj

((

k̃1
−i, k̃

2
−i

)

, G+
j

)

=

(4.3)











k k̃2
mj = k∀m ∈ G+

j ∨ ∃!m ∈ G+
j ; k̃2

mj 6= k ∧ i 6∈ G+
j

k ∃m ∈ G+
j : k̃2

mj = k̃1
j ∨ k̃2

mj = k∀m ∈ G+
j ; m 6= i ∧ i ∈ G+

j

k otherwise.

The notation ∃! in this expression means “there exists a unique...”, ∨
means logical ’or’, while ∧ means logical ’and’.

We can define MAJj

((

k̃1
−i, k̃

2
−i

)

, G−
j

)

in the same way. The func-

tion is complicated enough, it is probably just as easy to define it in
words. The set G+

j consists of three players that learn the first of j’s
13



encryption keys. The function MAJ is supposed to record what these
three players reported to player i. How i interprets the messages de-
pends on whether he is one of the members of G+

j or not. If G+
i contains

only players other than i, then MAJ looks at their three reports about
j’s key, and replies with that report if all three players reports are the
same, with the majority report if only two out of the three reports
agree, and with an arbitrary report k otherwise.

In the event that i is in the set G+
j , then MAJ looks at the report

that i received from j in the first period, and the reports that the other
two players in G+

j made to him in the second period. MAJ responds

with the majority report, or with k if there isn’t a common message
among the three. The notation MAJ is obviously meant to signal
’majority report’.

Definition 3. The mapping τ for player i is referred to as a confirma-

tion process if there is a collection of sets
{

G+
j , G−

j

}

j=1,...,n
such that

(4.4)

τj

(

k̃1
−i, k̃

2
−i

)

=
(

MAJj

((

k̃1
−i, k̃

2
−i

)

, G+
j

)

,MAJj

((

k̃1
−i, k̃

2
−i

)

, G−
j

))

.

A confirmation process describes the way that a particular player i

processes information from other players. The first thing he does is to
choose the groups G+

j and G−
j for himself and each of his opponents. He

then responds only to messages he receives from those groups, and only
if the messages he receives from within a group agree with one another.
If they do agree, he ends up with a pair of encryption keys for each
player. Once he has these pairs of encryption keys, he can use them
to decrypt the public messages m̃ that were made in the first period.
This leads very naturally to a confirmation mechanism which makes
commitments based on the decrypted type and correlating reports that
emerge from this process.

Let
(

θτ
(

m̃, k̃1
−i, k̃

2
−i

)

, xτ
(

m̃, k̃1
−i, k̃

2
−i

))

be the vector of decrypted

types and type reports to be used by player i when using the confir-
mation process τ . The jth component of this vector is given by

(

θτ
j

(

m̃, k̃1
−i, k̃

2
−i

)

, xτ
j

(

m̃, k̃1
−i, k̃

2
−i

))

≡

(4.5)
{

E−1
(

m̃j, τj

(

k̃1
−i, k̃

2
−i

))

if E−1
(

m̃j, τj

(

k̃1
−i, k̃

2
−i

))

∈ Θ × [0, 1]
(

θj, xj

)

otherwise.

Definition 4. A mechanism γi : Mn × Kn(n−1) → Ai for player i is a
confirmation mechanism if there is a mapping γ0

i : Θn × [0, 1]n → Ai

14



and a confirmation process τ such that

(4.6) γi

(

m̃, k̃1
−i, k̃

2
−i

)

= γ0
i

(

θτ
(

m̃, k̃1
−i, k̃

2
−i

)

, xτ
(

m̃, k̃1
−i, k̃

2
−i

))

.

A strategy for this game specifies an action in information sets in
which player i has to send out encryption keys in the first round, and
information sets in which player i has to report the keys he received
from others in the first round.

Definition 5. A strategy rule for player i is said to be confirming with
respect to the confirmation process τ if i sends the same encryption key
to each member of G+

i , sends the same encryption key to each member
of G−

i , and truthfully reports the keys that were reported to him.

Lemma 6. Let τ be a confirmation process for player i, and suppose

that all players are using strategies that are confirming with respect to

τ . Then for any j 6= i, τ
(

k̃1
−i, k̃

2
−i

)

is independent of what j reports.

On the other hand, if (k, k′) is any pair of encryption keys, there are

messages that i can send such that

τi

(

k̃1
−i, k̃

2
−i

)

= (k, k′) .

The logic of this Lemma is straightforward - any report that one
player sends to another will be ignored unless it is confirmed by at
least one other player. If the others are all using confirming reporting
strategies, then player j anticipates that the message he received from
player l in the first round was was the same message that l conveyed to
each of the other players. If he reports it truthfully to i in the second
round, then one of two things will happen: if j is in G+

l or G−
l , then

two other players will report the same message to i. If j reports the
message truthfully, he will simply confirm those other messages. If he
reports something else, his report will be discarded. If j is not in G+

l

or G−
l , then his message would be ignored anyway.

For i, if he reports the same message to each of the players in G+
i and

each of the players in G−
i , then those players are expected to mimic that

message back to him if they are using confirming reporting strategies.
Since they do this no matter what message i sends them, the result
follows.

There is one last preliminary idea needed regarding confirmation pro-
cesses. A confirmation process for player i includes a list of groups G+

j

and G−
j for each of the other players. If player j also uses a confirma-

tion process, then j could, in principle, specify a distinct set of groups.
We will say that the confirmation process used by a pair of players is
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consistent if each process uses the same groups G+
j and G−

j for each
player.

4.4. Consensus Mechanisms. Now we want to extend the confirma-
tion idea described above once more. The idea that principals should
ask their agents for recommendations about how to process information
is due to Yamashita (2010). His idea was to have the principal commit
himself to carry out the recommendations of the agents provided an
outright majority of the agents make the same recommendation. We
simply adapt this idea here. In our context there may or may not be
agents, so players ask other players for recommendations. If the princi-
pal’s mechanism commits him to carry out the recommendation when
all the other players, or all but one of the other players agree, then we
say that the principal’s mechanisms is a consensus mechanism.7

Formally, a mechanism ri : (Γi)
(n−1) × M̃n × Kn(n−1) → Ai is a

consensus mechanism if

ri

(

γ−i, m̃,
(

k̃1
−i, k̃

2
−i

))

=







γ′

(

˜
m̃,

(

k̃
1

−i, k̃
2

−i

)

)

if {∃!j : γj 6= γk ≡ γ′∀k 6= j} ∨ {γk = γj ≡ γ′∀j, k}

ai otherwise.

Each of the other players recommends a mechanism γ that converts
a public profile of encrypted types and correlating messages, along
with all the private communication, into an action. The consensus
mechanism implements the mechanism γ if all the recommendations,
or all but one of the recommendations, agree. Otherwise, the consensus
mechanism implements an arbitrary outcome.

Now the proof of our folk theorem can be done constructively. On
our equilibrium path all players will offer a consensus mechanism in-
dependent of their type. If all players do this, then each of them will
recommend a confirmation mechanism to each of the other players.
The details of the confirmation mechanism will depend on the alloca-
tion rule we are trying to support. If some player deviates and offers
something other than a consensus mechanism, then the other players
will recommend to each other a confirmation process than penalizes
the deviator.

7This is the generalization of a menu mechanism in common agency. The princi-
pal offers the agent a menu of indirect mechanisms and commits himself implement
whatever they choose. In a multiple agency context, the additional restriction is
simply that agents have to agree about which mechanism they want.
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It should be apparent why this construction will work. Players can
see whether or not everyone has offered a confirmation process after
mechanisms are announced. They then believe that they know what
recommendations the others will make. The nature of a consensus
process is such that unilateral disagreement is ignored, so going along
with the majority is a weak best reply.

Once players decide to participate and recommend the confirmation
process they think that everyone else is going to recommend, they need
to send out encryption keys and report the keys that have been reported
to them. If they believe that the others are using confirming strategies,
then they can’t improve on a strategy that sends the same encryption
keys to each of the players in the confirming groups G+

i and G−
i and

reports truthfully any keys they learned in the first period.

5. The Proof of the Main Theorem

Proof. On the equilibrium path each player, no matter what his type,
should offer a consensus mechanism, and choose a pair of keys (k, k′) by
independently drawing each key from K using some non-informative
prior distribution on K.8 The players should report keys keys ’truth-
fully’ in both periods. To describe exactly what truthful reporting
means, and to describe the recommendations players are supposed to
make, we need to describe the confirmation mechanisms that players
are going to recommend. These depend on the outcome function we
are trying to support.

Let q (θ) be the randomization that is to be supported when types
are θ. Since the allocation rule is individually rational, there is a col-
lection of punishments that ensure participation by each player when
a mechanism designer tries to implement q. Let {pi (θ−i)}i∈N be the
type contingent randomization that is to be carried out by the players
other than i when i is being punished.

Let τ be a confirmation process for player i, which specifies the
confirmation sets G+

i and G−
i . Recall that the process τ produces

n pairs of keys that can be used to decrypt the public message m̃,
producing a vector in T n × [0, 1]n of types and correlating messages
as in (4.5). Write (θτ , xτ ) for short to represent these decrypted bits
of information (implicitly bearing in mind that they are derived from

reports
(

m̃, k̃1
−i, k̃

2
−i

)

. The equilibrium path recommendation by the

8For example, for each measurable subset B of K the probability with which the
key is drawn from B is equal to the measure of B divided by the measure of K.
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other players to player i is given by

(5.1) γi

(

m̃, k̃1
−i, k̃

2
−i

)

= α
q(θτ )
i

(

⌊
∑

j∈N

xτ
j ⌋, A

)

where α
q
i is the projection of the randomizing function for mixture

q
(

τ θ (s−i, t−i)
)

on the set A onto the set Ai. The randomizing function
is defined by (4.1) above.

When player l unilaterally deviates in the first period and offers
something other than a recommendation mechanism, the others (in-
cluding the deviator) will recommend

(5.2) γl
i

(

m̃, k̃1
−i, k̃

2
−i

)

= α
pi(θ

τ )
i

(

⌊
∑

j∈N

xτ
j ⌋, A−l

)

to each non-deviating player i. Note that the confirmation process used
by each player in (5.2) is the same as the confirmation process they use
in (5.1).

We can now specify the strategies for the players.
STRATEGIES: In period 1, each player should offer a consen-

sus mechanism, choose a number x in [0, 1] using a uniform distri-
bution, select a pair of keys (k, k′) by independently applying a non-
informative prior distribution to K, then publicly announce the mes-
sage m̃ = E ((θi, x) , k, k′). He should truthfully report the keys to his
confirmation groups G+

i and G−
i . He should choose reports to players

outside his confirmation groups using a non-informative prior on K.
Since all players offer the same mechanism in the first period, no

matter what their types, all on path information sets have each player
offering a consensus mechanism. In those information sets, player i

should recommend γj as given by (5.1) to each other player j, then
truthfully report the keys they received in the first period to each of
the other players.

In any information set in which a single player, say player k, has de-
viated and offered some mechanism other than a consensus mechanism,
player i (including the deviator himself) should recommend the punish-
ment mechanism γk

j as given by (5.2) to each player j 6= k, truthfully
report the keys they received from the other players to each player other
than k, and choose key reports and recommendations for player k that
are independently drawn using non-informative prior distributions.

In any information set in which more than three distinct mecha-
nisms are offered, each player should independently randomize over all
messages using a non-informative prior distribution.
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BELIEFS: In every information set off the equilibrium path, players
should maintain their prior beliefs about types. In the information
set in which a single player has deviated and offered something other
than a consensus mechanism, the non-deviators should believe that the
deviator truthfully reports the keys that other players reported to him.

Now we proceed to prove that the strategies and beliefs specified
above constitute a perfect Bayesian equilibrium.

ON-PATH: To begin, note that we are trying to show that there
is an equilibrium that supports the outcome function q as a perfect
Bayesian equilibrium. In this equilibrium players expect the others
to recommend a confirmation mechanism as given by (5.1) to each
of the other players. If player i does this as well, then he expects
each player will use the mechanism described by (5.1) to convert key
reports and public messages into actions. Since he is expecting players
to encrypt their true types, choose their correlating message using a
uniform distribution, randomly select keys independently using a non-
informative prior, and report all keys truthfully, he expects by (5.1)
and (4.2) that the randomization q (θ) will occur when players true
types are θ. So his payoff by following the equilibrium strategy is

E {ui (q (θi, θ−i) , (θi, θ−i)) |θi} .

There are a variety of deviations that are possible. Notice first of all,
that whatever he does in the first period, he is reporting what he heard
from other players in the second period. He expects the others to
report exactly the same messages that he heard. Then by Lemma 6,
he believes that his own second period messages will be ignored. So
reporting truthfully is a best reply.

If he sends out different keys to different players in his confirmation
group, he expects them to truthfully report these different keys to the
others. His keys will be treated as bad keys, and by (4.5) his type will
be interpreted as (θi, xi). By Lemma 2, his payoff is then

E {ui (q (θi, θ−i) , (θi, θ−i)) |θi}

which is lower than his equilibrium payoff because of the fact that q (·)
is incentive compatible.

If he sends players false keys, or encrypts the wrong type and cor-
relating message, then again, by Lemma 2 (which shows that the dis-
tribution of the fractional part of the sum of correlating messages is
independent of i’s message when the others messages are chosen uni-
formly), the best he can do is given by the payoff

E {ui (q (θ′i, θ−i) , (θi, θ−i)) |θi}
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for some θ′i. Any such deviation is unprofitable since q is incentive
compatible.

OFF-PATH: This brings us to the deviations that take the game
off path in the second period. If there are three or more mechanisms
offered in the first period, then reporting randomly is a best reply to
the expectation that everyone else will report randomly. In that case,
contracts cannot be enforced, actions are already committed, and there
is nothing else a player expects to be able to do.

The only unilateral deviation occurs when a single player l offers
something other than a consensus mechanism. Then player l expects
the others to make random recommendations to him, making it im-
possible for him to commit. Each non-deviating player j is expected
to recommend (5.2) to any other non-deviating player i. Since these

recommendations commit i to γl
i

(

m̃, k̃1
−i, k̃

2
−i

)

as given by (5.2). Then

by (4.2), the deviator’s payoff is

E
{

ul

(

al, p
i (θ−l) , (θl, θ−i)

)

|θl

}

where al is the action specified by his contract for the case in which
player l does not receive a common recommendation. This is lower than
his equilibrium payoff because of the individual rationality condition
(1.2).

The deviator cannot improve this payoff by altering his messages for
two reasons. First, the punishment the others impose is independent
of his type, and by Lemma 2, his correlating message. So it doesn’t
matter what keys he sends in the first period, or what his encrypted
message is. In the second period, the others are expected to report the
keys they heard truthfully. By Lemma (6), his second period reports
are ignored.

Finally, when players other than the deviator make their reports in
the second period, they expect all the others, including the deviator,
to recommend the punishment mechanism and to reveal the keys they
received in the first period truthfully. Their deviations are ignored as
a consequence, so that truthful reporting is sequentially rational. ¤

6. Remarks.

The approach above shares many of the methods of the literature on
communication in games, as in Gerardi (2004),Forges (1986), or Barany
(1992). Gerardi (2004), for example, uses the majority rule approach
to ensure that players all send the ’correct’ message in his communica-
tion protocols. This is exactly the idea behind a consensus mechanism.
He also uses the randomization idea in (4.1), albeit restricted to two
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players.9 The important difference between our paper and all this liter-
ature is the fact that we are doing mechanism design - players can make
commitments based on messages. So the allocation rules we support
aren’t typically communication equilibrium (or correlated equilibrium
with complete information).

As an example, consider a prisoner’s dilemma played between two
players 1 and 2. To make the environment fit our settings, add two
disinterested players 3 and 4 who take no actions of their own. The
actions are C for cooperate and D for defect. The only communication
equilibrium in this game has both players A and B playing D, since
the action C is strictly dominated. The outcome where both 1 and
2 play C can be supported as an equilibrium with recommendation
mechanisms. A recommendation mechanism commits the player to
the action the other three players recommend provided 2 of the three
recommendations agree. To keep things simple, suppose the only other
mechanisms that players are allowed to offer are the ones that ignore
all messages and commit to either C or D. The strategies are for each
player 1 and 2 to offer a recommendation mechanism then recommend
C if the other player offers a recommendation mechanism, Players 3
and 4 recommend C if 1 and 2 both offer recommendation mechanisms,
and recommend D if one player offers a recommendation mechanism
and the other doesn’t. It should be apparent in this construction that
deviating from this equilibrium changes the action of the other player
from C to D. So these strategies constitute an equilibrium.

What is important in this exercise is that players 1 and 2 have a
way to commit themselves to an action which can never be part of a
communication equilibrium.

There is a literature on mechanism design in communication net-
works (J. Renault and Tomala (2010) or Renou and Tomala (2012))
which considers sequential communication schemes like the one we de-
scribed in Section 4.3. In this literature, a centralized mechanism de-
signer can communicate with only a subset of all the agents. However,
the agents can communicate among themselves according to some ex-
ogenously fixed communication protocol. The papers cited above pro-
vide communication protocols which allow agents to communicate their
type information secretly to the principal. The essence of their result

9He has two players publicly announce numbers in the interval [0, 1] then uses the
fractional part as a public correlating device. As there are only two players and their
messages are public, he doesn’t need our Remark 7, which shows that the property
for the two player case also holds with more players and private communication. In
our model, there are no public messages at all, beyond the mechanisms that players
announce at the beginning of the game.
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is to show that, provided the communications network is right, there
is a way for agents to encode their own information along with the
information they have received from others, and pass it along in such
a way that only the the mechanism designer can decode it.

In order to ensure that players pass along encoded information truth-
fully, their papers use a method that resembles our confirmation pro-
cess. A protocol that transmits player 1’s type (assumed here to be a
positive number) to the mechanism designer is repeated, say, 3 times.
Player 1 chooses at random one of the three repetitions and transmits
his type on that repetition. On each of the other two repetitions he
transmits the number 0 as his type. If the mechanism designer decodes
2 zeros and one positive number, he responds as if the type is a positive
number. If he decodes any other sequence, he implements a punish-
ment. The purpose of this is to ensure that the other players transmit
messages from player 1 truthfully. They don’t know which of the three
messages from player 1 contain his type report. So they have a 1 in
three chance of changing the outcome in a way that they might like,
and a 2/3 chance of inducing the punishment when they lie. Assuming
that there is a punishment that is strictly worse than any outcome the
mechanism designer might otherwise implement, no matter the type of
any other player, then repeating the protocol enough times will ensure
that players other than player 1 transmit messages truthfully.

The details of the argument differ, but the spirit is the same as the
confirmation process - if other players are hearing the same message
that you are, then there are sometimes ways to to check whether they
are transmitting the information truthfully. Our communication pro-
cess is structured to do this, so we don’t need a ’worst outcome’ that a
mechanism designer can use to enforce truth-telling. In our framework,
deviating messages are simply ignored. Of course, the context of our
result is quite different since we don’t have a mechanism designer in
the first place - we deal with decentralized competition.

Nonetheless, the method they describe illustrates how the results pre-
sented here might be extended to games with fewer than seven players.
Our communication mechanism requires agreement among all but one
of the players who are participating in a mechanism. If there are only
two players, and the messages they send are different, then the player
who is interpreting them does not know which message is the correct
one, and which is a deviation. Each of our players has to have at least
three others sending him messages for our method to work. The method
above illustrates how a player might detect deviations with messages
from only two players provided the sequential communication mecha-
nism goes on for long enough. It may also be possible to extend our
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results if there is a public correlating device using methods like those
in Forges and Vida (2011) who show that communications equilibrium
outcomes can be implemented with long cheap talk in games with only
two players using a public device.

The use of a second round of communication to provide a mecha-
nism designer with additional information is similar to the argument
in Mezzetti (2004), who shows how a mechanism designer can improve
outcomes by using a second round of information in which players pro-
vide information about their values. When players’ payoffs are interde-
pendent, each player’s value contains information about everyone else’s
type in much the same way the first round reports do here. Of course,
the method we use to get players to reveal this information is quite
different than it is in that reference.

Folk theorem like results for competing mechanism games have been
provided by Tennenholtz (2004), Kalai, Kalai, Lehrer, and Samet (2010)
and Peters and Szentes (2012). The essential difference between these
papers and our result here is that they assume contracts condition
directly on the contracts of other players. The paper by Peters and
Szentes (2012) deals with incomplete information games. It fully char-
acterizes the outcome functions that can be supported as contract equi-
librium. However, it assumes that players never communicate privately.
Any type information that a player wants to convey must be publicly
conveyed through his contract offer. This can limit the effectiveness
of punishments since a deviating player will inevitably know the types
of the other players when he deviates. It is difficult to give a formal
description of the difference between the two papers because Peters
and Szentes (2012) rule out randomization. To illustrate the relation-
ship between the outcome function and the information that a deviator
would then have during the punishment phase, we would need to de-
velop considerable additional formalism. Roughly speaking, their char-
acterization provides an individual rationality constraint that looks like
1.2 except for the fact that the deviator’s beliefs when he chooses his
best action would depend on the types of the punishing players. They
provide an example of an outcome function that is supportable in the
sense described here, which cannot be supported as an equilibrium in
their game because of the fact that firms equilibrium contract offers
leak information about their types. So the set of outcome functions
supportable as Bayesian equilibrium in the Peters and Szentes (2012)
model is strictly smaller than the set supported here.

The paper by Peters (2010) provides a characterization of outcome
functions supportable as perfect Bayesian equilibrium in regular con-
tracting games. It revisits the question in Epstein and Peters (1999)
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and provides a set of indirect mechanisms that can be used to mimic
equilibrium outcomes in any competing mechanism game - effectively
providing a revelation principle for competing mechanisms. It uses the
encryption idea that is used here in order to support outcome func-
tions that are Bayesian incentive compatible and individually rational
as subgame perfect equilibrium. There are two differences. First, it as-
sumes that contracts can condition directly on one another, somewhat
in the manner of Peters and Szentes (2012). Secondly, it assumes that
the process by which type information is revealed or not revealed at the
second stage is carried out completely automatically. The contribution
of this paper is to illustrate that the outcome functions that are sup-
ported in Peters (2010) can also be supported when players use more
traditional mechanisms in which outcomes are conditioned entirely on
messages privately sent by agents.

However, the competing mechanism game described in this paper is
not equivalent to the game described in Peters (2010). In particular,
the game described here, like the game described by Yamashita, is not
’regular’ in the sense of Peters (2010). What that means in particu-
lar is that the recommendation game described here (as well as the
game described by Yamashita) have players making recommendations
after they see deviations. That means that they can tailor the recom-
mendation to what the deviator actually chooses to do. The deviator
will be max-mined instead of being min-maxed, generally a more se-
vere punishment. So there will be outcome functions here that are
supported as equilibria, which cannot be supported by the game in
Peters (2010), where the punishment players can impose on a devia-
tor must be independent of the deviation. A full characterization of
the outcome functions supported as subgame perfect equilibrium for
non-regular games (like Yamashita’s) is still unknown.

7. Refinements in Competing Mechanism Games

The game here differs from Yamashita’s game in an important way.
In particular, in our game, commitments aren’t enforceable unless play-
ers jointly agree to participate in them by sending consistent recommen-
dations. The purpose behind this unusual modeling device is to prevent
players from offering mechanisms which don’t support any kind of con-
tinuation equilibrium. The reason such mechanisms present a problem
is that subgame perfection requires Bayesian continuation equilibrium
in all continuation games, including games in which some player devi-
ates to a problematic mechanism.
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To understand the problem, consider the following game with com-
plete information. There are four players in this game instead of seven
because with complete information, there is no need to exchange en-
cryption keys. We only need enough players to support the recommen-
dations.

Suppose that player 1 has three possible actions, {a, b, c}. None of
the other players controls any actions at all. Player 1 offers a mech-
anism, and the solution concept requires that after seeing the mecha-
nism, continuation play constitutes a Nash equilibrium (subgame per-
fection). Obviously, player 1 simply chooses his favorite action in any
Bayesian equilibrium. However, player 1 could deviate and offer a
mechanism which invites players 2 and 3 to send a message in [0, 1] .
He commits to translate the messages m2 and m3 into actions the fol-
lowing way:

γ (m2,m3) =











a if m2 < m3 < m2 + 1
2
,

b if m2 = m3 or m3 = m2 + 1
2

c otherwise.

,

Now imagine payoffs for player 2 areu (a) = −1, u (b) = 0, and u (c) =
1. Player 3’s payoff is −u. This is simply the Sion Wolfe Sion and
Wolfe (1957) example of a game that has no equilibrium in either pure
or mixed strategies. This is a feasible mechanism in our framework, and
a reasonable looking mechanism in any framework. So in this simple
setting, there can be no subgame perfect equilibrium even though the
game is trivial.

One approach to this problem is to restrict the set of mechanisms
that players are allowed to recommend to principals (by requiring that
mechanisms only use finite message spaces for example so that con-
tinuation equilibrium always exists). An alternative approach would
be to use a refinement other than subgame perfection.10 For example,
Peters and Szentes (2012) suggest a refinement that looks more like se-
quential rationalizability. Fortnow (2009) adds a computation cost to
mechanisms so that a mechanism that doesn’t support an equilibrium
outcome becomes infinitely costly to offer.

Here all we do is to allow agents to jointly veto a mechanism that
doesn’t have an equilibrium by sending different recommendations. Ve-
toing a mechanism like that is always sequentially rational if you believe
all the others will veto it anyway.

10Sequential equilibrium is not well suited to the game discussed here because
the messages spaces aren’t finite.
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Conclusion

The basic contribution of this paper can be understood in one of two
ways. First, it shows how to modify the recommendation game de-
scribed by Yamashita in order to show that the recommendation game
supports all the outcomes supportable by a centralized mechanism de-
signer. Alternatively, it shows how to support the set of outcome func-
tions described in Peters (2010) with traditional mechanisms in which
commitments are based on private communication with agents.

8. Appendix

8.1. Uniform Distributions and independence.

Remark 7. ⌊x +
∑

j 6=i x̃j⌋ is uniformly distributed on [0, 1] indepen-

dently of x̄ provides each x̃j is uniformly distributed on [0, 1].

Proof. Suppose that n = 2. Then
∑

j 6=i x̃j = x̃j, and ⌊x̄ + x̃j⌋ is

obviously uniform. Let both x̃1 and x̃2 be uniform on [0, 1]. Then the
probability density function of z̃ = x̃1 + x̃2 is11

f (z) =

{

z 0 ≤ z ≤ 1

2 − x otherwise.

The probability that ⌊z̃⌋ ≤ w is then given by

∫ w

0

zdz +

∫ 1+w

1

(2 − z) dz = w.

So ⌊x̃1 + x̃2⌋ is uniformly distributed. So when n = 3, ⌊x̄ +
∑

j 6=i x̃j⌋ is
uniformly distributed. Then the argument follows by induction. If for
n−1 players ⌊x̄+

∑

k 6=j x̃k⌋ is uniformly distributed, then for n players

⌊x̄ + x̃j +
∑

k 6=i,j

x̃k⌋ =

⌊x̃j + ⌊x̄ +
∑

k 6=i,j

x̃k⌋⌋

and uniformity follows from the result for n = 3. ¤

11Hall (1927).
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8.2. Proof of Lemma 6.

Lemma 8. Suppose n ≥ 4. Consider any subgame and set of strategy

rules such that some player j believes that player i is using a confir-

mation process. Suppose further that all the players other than j are

using strategy rules that involve a consistent revelation strategy. Then

whatever the realizations (s−j, t−j) of the others’ reports, τ i
k (s−i, t−i) is

independent of what j reports if k 6= j, while there are reports that j

can send to i such that τ i
j (s−j, t−j) takes any value in S.

Proof. Fix the first round reports s−j of the players other than j. We
write in the obvious way s−jk for the sub vector consisting of reports
in s−j by players other than k. Suppose that j’s strategy is consistent
and he sends the message s′ to each of the other players in the first
round. Then since every other player is using a consistent strategy,
the value that i uses for player j will be based on first round messages
(s′, s−ij), second round message (s′, s−kj) from each player k 6= j since
each such player is using a consistent reporting strategy, and second
round message s−j from player j which doesn’t depend on s′. Since the
first round message from player j agrees with the second round reports
of each of the other players, we conclude by (4.4) that

τ i
j

(

(s′, s−ij) ,
∏

k 6=i,j

(s′, s−kj) , s−j

)

= s′.

Notice that this verifies the last part of the theorem - j can induce any
value for τ i

j in S.
Player j can deviate from this consistent strategy by sending different

messages to the other players on the first round. He could also send
different messages to i on the second round, but τ i

j doesn’t depend on
i’s second round messages, so we defer discussion of this second kind
of deviation. Let sk be the message he sends to player k on the first
round, and s̃−j the vector of n−1 messages he sends to i on the second
round. In this case there are two possibilities. If the players k 6= j all
report s′k = s′, or if all but one of the others reports s′ = s′i then by
(4.4),

τ i
j

(

(s′i, s−ij) ,
∏

k 6=i,j

(s′k, s−kj) , s̃−j

)

= s′,

which is an outcome j could have obtained by using a consistent report-
ing strategy and reporting s′ in the first round to everyone. Otherwise,

τ i
j

(

(s′i, s−ij) ,
∏

k 6=i,j

(s′k, s−kj) , s̃−j

)

= s,
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which is an outcome he could also accomplish with a consistent strategy
by sending the message s to each player then reporting accurately to i

in the second round.
To complete the proof of the theorem, observe that since player k is

using a consistent reporting strategy, he will make the same first round
report sk to each of the other players. With the possible exception of
player j, each of the others will then report sk to player i. Since at
least two second round reports will agree with k’s first round report,
we have

τ i
k

(

(s′i, s−ij) ,
∏

k′ 6=i,j

(s′k′ , s−k′j) , s̃−j

)

= sk

independent of s̃−j. ¤
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