
DEFINABLE AND CONTRACTIBLE CONTRACTSMICHAEL PETERS AND BALÁZS SZENTESAbstra
t. This paper analyzes Bayesian normal form games in whi
h players write 
ontra
tsthat 
ondition their a
tions on the 
ontra
ts of the other players. These 
ontra
ts are requiredto be representable in a formal language. This is a

omplished by 
onstru
ting 
ontra
ts whi
hare de�nable fun
tions of the Godel 
ode of every other player's 
ontra
t. We provide a 
omplete
hara
terization of the set of allo
ations supportable as pure strategy Bayesian equilibrium of this
ontra
ting game. When information is 
omplete, this 
hara
terization provides a folk theorem.In general, the set of supportable allo
ations is smaller than the set supportable by a 
entralizedme
hanism designer.1. Self Referential Strategies and Re
ipro
ity in Stati
 GamesIn this paper we 
hara
terize the allo
ation rules attainable by players in a Bayesian game whenthey have the ability to 
ommit themselves by writing 
ontra
ts that 
ondition their 
ommitmentson other players' 
ontra
ts.The idea that 
ontra
ts might 
ondition on other 
ontra
ts is not new in e
onomi
s. The bestknown expression of this idea is well known in the industrial organization literature (e.g. [11℄) asthe 'meet the 
ompetition' 
lause in whi
h one �rm 
ommits itself to lower its pri
e when any of its
ompetitors does. A similar idea appears in trade theory as the prin
iple of re
ipro
ity ([2℄). Thistakes the form of trade agreements like GATT that require 
ountries to mat
h tari� 
uts by other
ountries. Finally, tax treaties sometimes have this �avor - for example, out of state residents whowork in Pennsylvania are exempt from Pennsylvania tax as long as they live in a state that has a're
ipro
al' agreement that exempts out of state residents (presumably from Pennsylvania) fromstate taxes.1All of these approa
hes are used to support 
ooperative out
omes in stati
 games. We extend thisapproa
h to games with in
omplete information. We provide a full 
hara
terization of allo
ationssupportable as 
ontra
t equilibrium. In parti
ular, we show the limits of the '
ontra
ts on 
ontra
ts'approa
h by providing allo
ations supportable by a me
hanism designer whi
h 
annot be supportedas equilibrium with 
ontra
tible 
ontra
ts. We also use our Theorem to provide something thatlooks like a folk theorem for a restri
ted environment.The di�
ulty with extending the older literature is that the 
on
eptual and te
hni
al toolsdeveloped there 
an only be used in any but the simplest problems. The meet the 
ompetitionVersion - January 22, 2009.1http://www.revenue.state.pa.us/revenue/
wp/view.asp?A=238&Q=2446811



2 MICHAEL PETERS AND BALÁZS SZENTESargument, for example, is extremely stylized. The Sta
kleberg leader, 
all it �rm A, o�ers to sell ata very high pri
e provided its 
ompetitor, �rm B, also o�ers that high pri
e in the se
ond round. If
B in the se
ond round o�ers any pri
e below the highest pri
e, A 
ommits itself to sell at marginal
ost. If B believes this 
ommitment, then one best reply is to set the highest pri
e.If the �rms move simultaneously, then the logi
 of the argument be
omes 
louded. A 
ould
ertainly write a 
ontra
t that 
ommits it to a high pri
e if B sets the same high pri
e. Howeversuppose that B's strategy is simply to set this high pri
e and that for some reason this is a best replyto A's 
ontra
t. Then A should deviate and simply under
ut �rm B. To support the high pri
eout
ome, �rm B would have to o�er a 
ontra
t similar to A's in order to prevent A's deviation. Anaive argument would suggest that B should simply o�er the same 
ontra
t as A, a high pri
e if Asets a high pri
e, and marginal 
ost otherwise. Casually, two out
omes seem 
onsistent with these
ontra
ts - both �rms pri
e at marginal 
ost or both �rms set the high pri
e. This seems to violatea fairly fundamental property of game theory whi
h is that for ea
h pair of a
tions (
ontra
tsin this 
ase), there is a unique payo� to every player.2 More to the point, A's 
ontra
t doesn'ta
tually say what A would do if B o�ers a 
ontra
t that promises to set a high pri
e unless A setsa lower pri
e, et
. The spe
i�
ation of the problem itself seems to be ambiguous about payo�s.Generally 
ontra
ts that rea
t to a
tions of other players simply don't make sense. They maynot lead to unambiguous out
omes as in the example above. More generally, it is possible thatsu
h 
ontra
ts are simply 
ontradi
tory. For example, two �rms might write 
ontra
t that 
ommitboth of them to set a pri
e that is stri
tly lower than the other �rms pri
e (or two e
onomistsdemand 
ontra
ts that guarantee that they will both earn more money than anyone else in thedepartment). To resolve ambiguities and 
ontradi
tions in su
h 
ontra
t, an outside mediator isneeded to 
hoose an out
ome. This defeats the purpose of using 
ontra
ts to de
entralize theunderlying allo
ation problem.The re
ipro
al tax agreement problem is better behaved, and provides the basis for the argumentwe extend below. State A wants to exempt residents of stateB from state taxes providedB exemptsresidents of state A from taxes. To write the law A exempts residents from any state that has a're
ipro
al' agreement with state A. The question is what exa
tly is a 're
ipro
al' agreement. Itis 
lear enough what the intention is - 
reate a situation in whi
h both states take the mutuallybene�
ial a
tion of exempting one another in a way that eliminates any in
entive for either of themto deviate. As mentioned above, it isn't enough to assume that state B un
onditionally exemptsresidents of state A from tax be
ause A would not longer have any in
entive to exempt state B.State B has to have a law like the law in state A, in other words, a re
ipro
al agreement.

2One paper that allows multiple payo�s to be asso
iated with ea
h array of a
tions is [12℄ who use this approa
hto support equilibrium when it might not otherwise exist.



DEFINABLE AND CONTRACTIBLE CONTRACTS 3It seems that to resolve this kind of problem one needs to de�ne the term 're
ipro
al 
ontra
t'as follows:re
ipro
al 
ontra
t ≡ exempt if the other state o�ers a re
ipro
al 
ontra
t,don't otherwiseThis kind of de�nition is familiar from the Bellman equation in dynami
 programming where thevalue fun
tion is de�ned in a self referential way. It is tempting to model this in the following naiveway: start by de�ning a 
olle
tion of 
ontra
ts that seem e
onomi
ally sensible. For example, it isreasonable that a state 
ould write a 
ontra
t that simply �xes any tax rate independent of whatthe other states do. Let C be the set of 
ontra
ts that simply �x some un
onditional tax rate.Append to this set of feasible 
ontra
ts the re
ipro
al 
ontra
t, 
all it r, de�ned above. Now modelthe set of feasible 
ontra
ts as C ∪ {r}. The re
ipro
al 
ontra
t above is just r, while 'otherwise'means any 
ontra
t with a �xed tax rate. De�ne a normal form game in whi
h the strategies are
C ∪ {r} and de
lare the out
ome if both states o�er r to be (exempt, exempt). Then there is anequilibrium in whi
h the states mutually exempt (assuming they jointly want to).We would argue that this is unsatisfa
tory for a number of reasons. First, it is undesirable torestri
t the set of feasible 
ontra
ts in order to support the out
ome you are looking for. Theapproa
h des
ribed above amounts to little more than saying that r is the only feasible 
ontra
t,then 
laiming it is an equilibrium for both states to o�er r. A more satisfa
tory approa
h isto de�ne a set of a
tions that seem e
onomi
ally meaningful, then to allow the broadest set of
ontra
ts possible. In the same manner that the value fun
tion emerges endogenously from thee
onomi
 environment, the re
ipro
al 
ontra
t should be derived from e
onomi
 fundamentals.Se
ond, the approa
h des
ribed above misses the essen
e of re
ipro
ity whi
h is the in�niteregress involved in self referential obje
ts. A 
ontra
t that makes formal sense is the following:C =




exempt if other State exempts any State who exempts any State who exempts. . .don't otherwisewhere the statement in the top line is repeated ad in�nitum. Arguably, the 
ontra
t C is are
ipro
al 
ontra
t sin
e it would exempt any State o�ering a re
ipro
al 
ontra
t. Yet it simplyisn't feasible under the naive des
ription given above.Finally, the ad ho
 approa
h des
ribed above simply isn't �exible enough to handle 
omplexenvironments and in
omplete information. For example, making the game asymmetri
 requires adho
 extension of the approa
h above. If State A is supposed to exempt, while state B is supposedto take some other a
tion, say 'partly exempt', then to support the right out
ome, the 
ontra
tsshould look something like the following:re
ipro
al 
ontra
tA ≡




exempt if other State o�ers re
ipro
al 
ontra
tBdon't exempt otherwise



4 MICHAEL PETERS AND BALÁZS SZENTESand re
ipro
al 
ontra
tB ≡




partially exempt if other State o�ers re
ipro
al 
ontra
tAdon't exempt otherwiseNow the 
ontra
ts are not dire
tly self referential, as is the Bellman equation, instead they are 
rossreferential. A single self referential or re
ipro
al 
ontra
t simply doesn't go far enough. Further-more, the 
ontra
ts above de�ne only a single 
ooperative a
tion, and use a blanket punishmentfor deviations. Desirable or interesting equilibrium allo
ations may not look like this. For example,in a general Bayesian game, the most desirable 
ooperative a
tion for both players might dependon information that only one of them has. So the a
tion that State A wants to take might dependon the 
ontra
t that B o�ers. Alternatively, the most e�e
tive punishment for A to impose on Bmight depend on a
tions that other states are taking. As the number of possibilities in
reases,so does the number of spe
ial words we need to add to our 
ontra
ting language to support theout
omes we want.Our approa
h avoids these problems. We �x a language and require 
ontra
ts to be written inthis language. We then show this language already 
ontains all the spe
ial terms like 're
ipro
al
ontra
t' that we need, even in very ri
h e
onomi
 environments where simple notions like '
oop-eration' do not adequately des
ribe the allo
ations we are interested in. The 
ontra
ting languagethat we des
ribe is universal in this sense.It is universal in a se
ond way. Allowing 
ontra
ts to spe
ify a
tions that depend on other
ontra
ts means that a
tions might depend on whether other players' 
ontra
ts depend on theway you make your a
tion depend on their 
ontra
ts, the way you make your a
tion dependon how their 
ontra
ts depend on the way you make your 
ontra
t depend on their 
ontra
ts,and so on. In simple prisoner's dilemma problems like the tax problem dis
ussed above, thisproblem is relatively straightforward sin
e 'dependen
e' simply means whether or not the otherplayer 
ooperates. However, in ri
her environments, 'dependen
e' is more subtle sin
e there aremany di�erent ways that players 
an 
ondition their a
tions at ea
h round in the hierar
hy ofdependen
ies des
ribed above. The method we des
ribe below provides a 
ompa
t way of dealingwith this.Finally, the Bellman equation style representation of a re
ipro
al 
ontra
t illustrates that thenotion of re
ipro
ity depends on the 
ontra
ting environment be
ause the word '
ooperate' appearsin the de�nition of a re
ipro
al 
ontra
t. It isn't obvious how to extend the argument to problemswhere a single '
ooperative' a
tion doesn't exist. The set of 
ontra
ts that we use, on the otherhand, is independent of the underlying game that is being played. Contra
ts need to map intofeasible a
tions, but the way that these a
tions depend on other 
ontra
ts doesn't depend on whatthese a
tions are. Nor does it depend on whether or not players have private information. In thissense, our 
ontra
ts are universal in the sense that they 
an be applied to any strategi
 situation.



DEFINABLE AND CONTRACTIBLE CONTRACTS 51.0.1. How De�nability Works. Return again to the main purpose of de�nability. Instead of 
re-ating spe
ial terms like �re
ipro
al 
ontra
t� in an ad ho
 way to support 
ooperative out
omes inspe
ial situations, we want to provide a 
ontra
ting environment in whi
h we 
an show that thespe
ial terms we need to write the 
ontra
ts that players need to enfor
e their 
ollusive agreementwill always exist within the language. We do it here to illustrate the method for the very simple
ase, then generalize the approa
h in the se
tions below.Suppose there are m players in a normal form game in whi
h ea
h player has a 
ountablenumber of a
tions. Endow players with a formal language 
ontaining a 
ountable number ofwords or 
hara
ters that they 
an use to write 
ontra
ts. Feasible 
ontra
ts are �nite sequen
es of
hara
ters in this formal language. As we mentioned above, the set �nite subsets of a 
ountableset is 
ountable, so there are bije
tions mapping ea
h �nite text into N. One su
h a mapping is
alled the Godel Coding. Provided the language in
ludes all the natural numbers and the usualarithmeti
 operations, it is possible for players to write 
ontra
ts that are de�nable fun
tions from
NN−1 into that player's a
tion spa
e. Sin
e de�nable fun
tions 
an be written as �nite sequen
es of
hara
ters in the language, they have Godel 
odes asso
iated with them. Hen
e we 
ould interpretthe de�nable fun
tions as 
ontra
ts that make the players a
tion depend on the Godel 
ode of theother player's 
ontra
t.To make the argument easier to relate to 
onventional 
ontra
t theory, we assume below thatthe 
ontra
t spa
e for ea
h player is the set of de�nable fun
tions from NN−1 into the subsetsof the player's a
tion spa
es. Every de�nable fun
tion 
an be asso
iated with a unique integer,and 
onversely if the integer n is asso
iated with a de�nable fun
tion, then it is asso
iated witha unique text. Now for ea
h array of fun
tions 
hosen by the players, 
ompute the Godel Codeof ea
h su
h fun
tion. Fit the 
odes of the other players' strategies into ea
h player's strategy todetermine a unique subset of a
tions for every player. Then, players simultaneously take a
tionsfrom these subsets.Our obje
tive is to try to 
hara
terize the set of equilibria of this game. To see how it works,we might as well restri
t attention to a two player prisoner's dilemma. As we illustrated above, wedon't really need our formalism to understand this game. However, it provides a simple illustrationof the methods we use in the general 
ase. Call the players 1 and 2, and the a
tions C and D withthe usual payo� stru
ture in whi
h D is a dominant strategy and both players are stri
tly bettero� if they both play C than they are if they both play D. A strategy c for a player is a de�nablefun
tion from N to {C, D}. One obvious equilibrium of this game o

urs when both players use astrategy that 
hooses a
tion D no matter what the Godel 
ode of the other player's strategy.Every de�nable fun
tion has a Godel 
ode. Let [c] denote the Godel 
ode of the strategy c andrefer to [c] as the 'en
oding' of c. Sin
e the Godel 
oding is an inje
tion from the set of de�nablestrategies to the set of integers. For any pair of strategies c1 and c2, the a
tion (C or D) taken byplayer 1 is c1 ([c2]) and similarly for player 2. Sin
e every pair of a
tions determines a payo�, thispro
edure asso
iates a unique payo� with every pair of strategies.



6 MICHAEL PETERS AND BALÁZS SZENTESThere are many things that aren't de�nable strategies that also have Godel 
odes. We want tomake use of some of these other things. In parti
ular, we want to use de�nable strategies with freevariables. For example, there is a sub
lass of de�nable strategies for player 1 de�ned parametri
allyby
γx (n) =





C n = x,

D otherwise.This is simply a de�nable strategy with a free variable x, where x is the target 
ode of the otherplayer's strategy that will trigger the 
ooperative a
tion. De�nable strategies with free variablesare also de�nable, and so they too have Godel 
odes. The strategy with free variable that we wantis a slight modi�
ation of the one above, in parti
ular(1.1) cx (n) =





C n =
[
〈x〉(x)

]
,

D otherwise.The mapping < x >(x)is the 
omposition of two fun
tions. First, the fun
tion 〈x〉 is the inverseoperation to the Godel 
oding. That is, < n > is the text whose Godel 
ode is n. Se
ond, if φ isa text with one free variable, then φ(n) is the same text where the value of the free variable is setto be n. Hen
e, if n is a Godel 
ode of a de�nable strategy with one free variable, then < n >(n)is itself a de�nable strategy (without a free variable). [〈n〉(n)
] is just the Godel 
ode of whateverthis de�nable strategy happens to be. Noti
e that in this 
ase, [〈x〉 (x)] won't be equal to x sin
e ade�nable strategy must have a di�erent Godel 
ode from a de�nable strategy with one free variablebe
ause of the fa
t that the Godel 
oding is inje
tive.We want to de�ne a strategy by �xing a value for x in (1.1). In parti
ular, the value of x weare interested in is [cx]. Sin
e [cx] is the Godel 
ode of a strategy with a free variable, the righthand side of (1.1) requires that we de
ode [cx] to get cx, then �x x at [cx] to get the 
ontra
t c[cx].Putting all this together gives

c[cx] (n) =





C n =
[
c[cx]

]

D otherwiseSo
c[cx] ([c2]) =





C [c2] =
[
c[cx]

]

D otherwiseis a the 're
ipro
al' or self-referential 
ontra
t mentioned above. Now we simply need to verifywhat happens when both players use strategy c[cx].If player 2 uses strategy c[cx], then [c2] =
[
c[cx]

], whi
h evidently triggers the 
ooperative a
tionby player 1. The same argument applies for player 2. Player 2 
an deviate to any alternativede�nable strategy c′ that she likes. Sin
e every de�nable strategy has a Godel 
ode, the rea
tion ofplayer 1, and 
onsequently both players payo�s are well de�ned. As the Godel 
oding is inje
tive,



DEFINABLE AND CONTRACTIBLE CONTRACTS 7
c′ 6= c[cx] implies the Godel 
ode of c′ is not equal to [c[cx]

], and the deviation by 2 indu
es 1 torespond by swit
hing from C to D.Noti
e that this argument makes use of an en
oding of the strategy with free variable cx, whi
hisn't a de�nable strategy. One might have expe
ted the target 
ode number to be asso
iatedwith a strategy instead of a strategy with a free variable. For example, it seems that to enfor
e
ooperation there needs to be a de�nable strategy c∗ with en
oding [c∗] = n∗ su
h that
c∗ =





C [c2] = n∗

D otherwiseOf 
ourse, for arbitrary n∗ it will be false that [cn∗ ] = n∗. This leads to a �xed point problemthat, in fa
t, does not have a solution in general. More generally, one 
ould try to 
onstru
t aself-referential 
ontra
t by �nding a �xed point of the the following problem. For ea
h n, 
onsider
cn ([c2]) =





C if [c2] = g (n) ,

D otherwise,where g is a de�nable fun
tion. If there exists an n∗ su
h that [cn∗ ] = g (n∗), then cn∗ is obviouslya self-referential 
ontra
t. Indeed, what we did above is that we 
hose g (n) to be [< n >(n)] andshowed that n∗ = [cx] is a 
orresponding �xed point.To see how the strategy with free variable cx works, re
all the re
ipro
al tax agreementre
ipro
al 
ontra
t ≡ exempt other State o�ers re
ipro
al 
ontra
tdon't exempt otherwiseand its re
ursive 
ounterpartC =




exempt if other State exempts any State who exempts any State who exempts. . .don't otherwiseThe 're
ipro
al 
ontra
t' is c[cx] and the statement �other state o�ers re
ipro
al 
ontra
t� is [c2] =[

c[cx]

].State A wants to exempt any state whose law ful�lls a 
ondition. For example, if the 
onditionit is looking for is that the other state simply exempts State S, then it would 
ompute the Godel
ode n0 = [C∀n] then use the strategy
cn0

=





C [c2] = n0

D otherwiseIf it does that, then it 
an't be an equilibrium as explained above. So what it needs to do isto exempt any State whose law ful�lls a 
ondition that exempts any state whose law ful�lls a
ondition. For example, if it wanted to exempt State B if and only if State B's law exempts state
A if and only if State A un
onditionally exempts state B, then it would adopt the strategy c[cn0 ]

,and so on.



8 MICHAEL PETERS AND BALÁZS SZENTESThis is where the parti
ular stru
ture of the 
ontra
t cx 
omes into play. Re
all that
cx (n) =





C n =
[
〈x〉(x)

]
,

D otherwise.It spe
i�es exemption if and only if a 
ondition is ful�lled, but it doesn't seem to spe
ify what the
ondition is. However, it does require that whatever the 
ondition x is, if x in turn depends ona 
ondition, then the 
ondition that it depends on must be the same as the 
ondition itself. Tosee if x depends on a 
ondition, we �rst de
ode it and �nd the statement 〈x〉 that the integer x
orresponds to. Then if it depends on some 
ondition, we require that that 
ondition be x itself,whi
h is the meaning of 〈x〉(x). So now we 
an do the in�nite regress. State A adopts a law thatexempts state B if and only if the Godel 
ode of State B's law is [c[cx]

]. This means that state
B's law must be c[cx], or that B exempt A if and only if the Godel 
ode of State A's law is [c[cx]

],i.e., the same 
ondition that A requires.Every 
olle
tion of de�nable 
ontra
ts uniquely determines a set of 
ommitments for ea
h of theplayers. Any sensible des
ription of the set of feasible 
ontra
ts should unambiguously determineplayers' 
ommitments in this way. We a

omplish this by making the 
ontra
ts arithmeti
. Theset of de�nable fun
tions is the largest set of arithmeti
 fun
tions that 
an be des
ribed usinga �nite text in a �rst order language. In this sense, the 
lass of 
ontra
ts that we des
ribe isuniversal in that any 'sensible' model of 
ontra
ts on 
ontra
ts should involve a 
ontra
t spa
ethat is embedded in the one we des
ribe.2. LiteratureAs we mentioned in the introdu
tion, our paper is not the �rst to show how 
ontra
tual devi
es
an be used to support 
ooperative play. Mu
h of the literature in this area follows an ideadeveloped in [5℄ in whi
h a
tions are delegated to an agent who is given the appropriate in
entivesto 
arry out a
tions that might not otherwise be part of a non-
ooperative equilibrium. This ideawas developed by [8℄ who used it to prove a 'folk theorem' for a very spe
ialized environment.The idea that the agent might be used to report deviations, thereby allowing prin
ipals to 
ommitthemselves to punish a deviator, is developed in [4℄. This idea provides the basis for the menutheorems in 
ommon agen
y, like [9℄, [10℄ and [6℄ whi
h illustrate how 
ooperative out
omes 
anbe supported by having the agent trigger punishments. Re
ently [14℄ provides a very general folktheorem for multiple agen
y games in whi
h prin
ipals 
an 
ommit to follow the re
ommendationsof (potentially interested) agents.Though this literature shows how 
ontra
tual devi
es 
an be used to support 
ooperative be-havior, it relies on the delegation of de
ision making power to an agent. In this paper, there isno agent, be
ause 
ontra
ts depend dire
tly on one another. This approa
h is 
losely related toideas in the 
omputer s
ien
e literature. One paper that uses this approa
h is [13℄. He has playerswriting programs that determine their a
tions. Using an idea due to von Neumann, he allows these



DEFINABLE AND CONTRACTIBLE CONTRACTS 9programs to use other programs as data, whi
h has the e�e
t of making the output of ea
h player'sprogram depend on the other players' programs. The result extends the �re
ipro
al 
ontra
t� ideapresented above to a more general n player game. We have illustrated the basi
 prin
iple with our'
ross-referential' example above. To support any array of a
tions, Tennenholz e�e
tively writesout expli
itly a sequen
e of programming statements resembling the verbal statements we madeabove. These de�ne the keywords that are needed to support any array of a
tions in whi
h ea
hplayer's payo� is at least his or her minmax value.The paper by [7℄ shows how to extend the set of supportable allo
ations in two player games.They 
onstru
t a set of 
ommitment devi
es whi
h 
an be used to support 
orrelated strategies inwhi
h all players payo�s ex
eed their minmax payo�s. Spe
i�
ally, in some games their devi
essupport out
omes in whi
h all players re
eive payo�s that ex
eed their best payo�s with Tennen-holz's programs. This is a

omplished by 
onstru
ting 
ommitment devi
es that allow players to
orrelated their a
tions while using independent randomizing devi
es.On the most basi
 level, our paper di�ers sin
e we are interested in problems with in
ompleteinformation. However, the more important di�eren
e is that our approa
h is dedu
tive rather than
onstru
tive. We �x a set of 
ommitment devi
es, then use this same set of devi
es to supportindividually rational out
omes in all �nite games. The advantage of this is that we are able togive a 
omplete 
hara
terization of the set of all supportable allo
ations. Tennenholz theorem doesnot rule out, for example, the possibility that there might be program equilibrium in whi
h someplayers re
eive less than their minmax payo�. With 
omplete information, this possibility is not
riti
al. For example, [7℄ rule it out by allowing players to reserve the right to pi
k their a
tionsin an un
onstrained way ex post. They interpret this as giving players the right not to parti
ipatein the 
ontra
ting pro
ess. With in
omplete information, there is no simple analog to the minmaxpayo�, so there is no simple tri
k like non-parti
ipation that 
an be used to show whi
h allo
ations
annot be supported as equilibria. By providing a more 
omplete des
ription of the set of feasible
ontra
ts we are able to over
ome this di�
ulty.It is pre
isely the ability to pin down allo
ations that 
annot be supported as equilibrium thatis 
riti
al to our obje
tive of showing the limits to whi
h 
ontra
ts 
an be used to de
entralizethe me
hanism designer's problem. We use our 
hara
terization to 
onstru
t examples of allo
a-tion rules that 
an be supported by a me
hanism designer, but 
annot be supported as 
ontra
tequilibrium.We emphasize that the 
ontribution here is not intended to be a 
ontribution to the 
omputers
ien
e literature. In fa
t, we view the paper as a very traditional 
ontra
ting model in whi
hplayers have a

ess to a legal system whi
h 
an be used to provide redress when 
ontra
ts arenot 
arried out. Yet redress is all we want. Our purpose is to de�ne a 
ontra
ting language su
hthat players 
an write any 
ontra
t that they like in this language. On
e all the players havewritten their 
ontra
ts, they should be able to dedu
e on their own what a
tions they need totake in order to ful�ll their 
ontra
ts. With 
omplete information, it isn't 
ompletely surprising



10 MICHAEL PETERS AND BALÁZS SZENTESthat many allo
ations 
an be supported in su
h an environment. It is in in
omplete informationenvironments where the set of supportable allo
ations has not been 
hara
terized, and this is howwe view our 
ontribution here.Finally, the use the Godel 
oding is simply for 
onvenien
e. On
e one sees that the 
olle
tionof all �nite texts 
onstitutes a 
ountable set, any de�nable bije
tion from �nite texts to integers
an be used to do the analysis we do. Any de�nable bije
tion 
an be expli
itly written into the
ontra
ts we allow, so that a judge (or player for that matter) who doesn't know what it is 
anexpli
itly 
al
ulate it. 3. The Language and the Gödel CodingWe 
onsider a formal language, whi
h is su�
iently ri
h to allow its user to state propositionsin arithmeti
. Furthermore, the set of statements in this language is 
losed under the �nite appli-
ations of the Boolean operations: q, ∨, and ∧. This implies that one 
an express, for example,the following statement:
∀n, x, y, z {[(n ≥ 3) ∨ (x 6= 0) ∨ (y 6= 0) ∨ (z 6= 0)] → (xn + yn 6= zn)]} .In addition, one 
an also express statements in the language that involve any �nite number of freevariables. For example, �x is a prime number� is a statement in the language. The symbol x isa free variable in the statement. Another example for a predi
ate that has one free variable is�x < 4.� One 
an substitute any integer into x and then the predi
ate is either true or false. Thisparti
ular one is true if x = 0, 1, 2, 3 and false otherwise.Let L be the set of all formulas of the formal language. Ea
h of its element is a �nite stringof symbols. It is well known that one 
an 
onstru
t a one-to-one fun
tion L → N. Let [ϕ] be thevalue of this fun
tion at ϕ ∈ L, and 
all it the Gödel Code of the text ϕ.In what follows, we de�ne a 
lass of fun
tions whi
h 
an be represented represented by �nitelymany 
hara
ters in our formal language.De�nition 1. The fun
tion f : Nk → 2N is said to be de�nable if there exists a �rst-order predi
ate

φ in k + 1 free variables su
h that b ∈ f (a1, ..., ak) if and only if φ (a1, ..., ak, b) is true.In the de�nition, the mapping f is a 
orresponden
e from Nk to N. Of 
ourse, if f (n) is asingleton for all n ∈ Nk, then f is a fun
tion. If the fun
tion f is de�nable by the predi
ate φ thenwe refer to [φ] as the Godel en
oding of f . We illustrate the previous de�nition with an example.Example. Consider the following fun
tion de�ned on N:
f (a) =

{
0 if a is an even number,
1 if a is an odd number.We show that this fun
tion is de�nable by 
onstru
ting the 
orresponding predi
ate φ.

φ (x, y) ≡ {{y = 1} ∧ {y = 0}} ∨ {∃z : 2z = y + x} .
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e that φ indeed has two free variables. (The variable z is not free be
ause there is a quanti�erfront of it.) The �rst part of φ states that y is either one or zero. The se
ond part says that x + yis divisible by two. Noti
e that f (a) = 0 if and only if φ (a, 0) is true. To see this, �rst noti
ethat φ (a, b) is false whenever b /∈ {0, 1}. (This is be
ause the �rst part of φ requires b to be zeroor one.) If b = 0 then φ (a, 0) is indeed true. If b = 1, then the se
ond part of φ be
omes falsebe
ause a + b is an odd number.4. Complete information Contra
ting GameSuppose there are m players. Player i has a �nite a
tion spa
e Ai. Let A denote ×m
i=1Ai. Thepayo� of Player i is ui (a1, . . . , am). We use the 
onventional notation that ui (ai, a−i) is the payo�to player i if he takes a
tion ai while the other players take a
tion a−i. Ea
h player simultaneouslysubmits a 
ontra
t, whi
h is a de�nable 
orresponden
e from Nm to 2N, where `de�nable' is to beunderstood in the sense of De�nition 1. At stage two, players take a
tions simultaneously fromsubsets of their a
tions spa
es. These subsets are determined by the �rst-stage 
ontra
ts. If atstage one player j submitted 
ontra
t cj (j = 1, ..., m), then player i 
an only take a
tion ai at stagetwo if [ai] ∈ ci ([c1] , ..., [cm]). We restri
t attention to pure-strategy subgame perfe
t equilibria ofthis game.The pure strategy minmax value for player i is

ui = min
a−i∈A−i

max
ai∈Ai

ui (ai, a−i) ,Let aj be any one of the a
tions that j uses to attain his minmax payo�. Let us �x an a
tion aji

ifor player i, su
h that, (
aj
1, ..., a

j
m

)
∈ arg min

a−i

uj

(
aj , a−j

) .That is, aj
i is the a
tion that player i uses to punish player j. For 
onvenien
e, de�ne aj

j = aj forall j ∈ {1, ..., m}.Theorem 1. The a
tion pro�le a∗ = (a∗
1, ..., a

∗
m) ∈ A is supportable as a pure-strategy SPNEout
ome in the 
ontra
ting game if and only if ui (a∗) ≥ ui for ea
h i.Before we pro
eed with the proof of the theorem, we re
all two pie
es notations from theintrodu
tion. First, if n ∈ N then < n > denotes the text whose Gödel 
ode is n. That is,

[< n >] = n. Se
ond, for any text ϕ, let ϕ(n1,...,nk) denote the statement where if the letter xistands for a free variable in ϕ then xi is evaluated at ni in ϕ for i = 1, ..., n. For example, if ϕis x1 < x2, n1 = 1, and n2 = 2 then ϕ(n1,n2) is 1 < 2. Consider now the following text in k freevariable: < xi >(x1,...,xk), where i ≤ k. One 
an evaluate this statement at any k-dimensionalve
tor of integers. Sin
e the Godel 
oding was a bije
tion < ni > is a text for ea
h ni ∈ N. Inaddition, ϕ(n1,...,nk) is de�ned for all ϕ and (n1, ..., nk). In addition, it is a well-known result inMathemati
al Logi
, that if f (n1, ..., nk) =
[
< ni >(n1,...,nk)

], then f is a de�nable fun
tion.



12 MICHAEL PETERS AND BALÁZS SZENTESProof. First, we prove the only if part. Fix an equilibrium in the 
ontra
ting game. Let cj denotethe equilibrium 
ontra
t of player j (j = 1, ..., m) and let ui denote player i's equilibrium payo�.Noti
e, that player i 
an always o�er a 
ontra
t that does not restri
t his a
tion spa
e. That is,he 
an o�er c : Nm → 2N, su
h that c (n1, ..., nm) = N for all (n1, ..., nm) ∈ Nm. The 
ontra
t c isobviously de�nable. 3 We show that if ui < ui, player i 
an pro�tably deviate at the �rst stage byo�ering c instead of ci. Let c̃j = cj if j 6= i and c̃i = c. Let Ãj = {aj : [aj ] ∈ c̃j ([c̃1] , ..., [c̃m])}. Thatis, Ãj is the a
tion spa
e of player j in the subgame generated by the 
ontra
t pro�le (c̃1, ..., c̃m).Also noti
e that Ãi = Ai. The payo� of player i in any pure strategy equilibrium of this subgameis weakly larger than
min

a−i∈ eA−i

max
ai∈Ai

ui (ai, a−i) ≥ min
a−i∈A−i

max
ai∈Ai

ui (ai, a−i) .The inequality follows from Ãj ⊆ Aj for all j. Therefore, player i 
an always a
hieve his pureminmax value by o�ering the 
ontra
t c.For the if part, 
onsider the following 
ontra
t of Player i, ci
xi,x−i

, in m free variables:
ci
x1,...,xm

(
([cj ])

m

j=1

)
=(4.1) 




[a∗
i ] if |{k :

[
< xk >(x1,...,xm)

]
6= [ck]

}
| 6= 1,[

aj
i

] if {k :
[
< xk >(x1,...,xn)

]
6= [ck]

}
= {j}The expression (4.1) is not a 
ontra
t, but rather a 
ontra
t with free variables. Ea
h su
hexpression has a Godel 
ode, so let γi =

[
ci
x1,...,xm

]. The fun
tions {ci
γ
1
,...,γm

}
i
have no freevariables, so they 
onstitute a set of 
ontra
ts. We will now show that {ci

γ
1
,...,γm

}m

i=1

onstitutesan equilibrium pro�le of 
ontra
ts whi
h support the out
ome {a1

k1
, . . . , am

km

}. First observe whathappens when all players use 
ontra
t ci
γ
1
,...,γm

. Noti
e that
ci
γ
1
,...,γm

(
([cj ])

m

j=1

)
=





[a∗
i ] if |{k :

[
< γk >(γ

1
,...,γm)

]
6= [ck]

}
| 6= 1,[

aj
i

] if {k :
[
< γk >(γ

1
,...,γm)

]
6= [ck]

}
= {j} .Player i needs to 
he
k whether the Godel 
ode of < γk >(γ

1
,...,γm) is equal to the Godel 
ode ofplayer k's 
ontra
t, ck. The integer γk is the Godel 
ode of the 
ontra
t with free variable ck

x1,...,xm
.Player i's 
ontra
t says to take this 
ontra
t with free variable, �x the free variables at γ1, ..., γm(whi
h gives the 
ontra
t ck

γ
1
,...,γm

), then evaluate its Godel 
ode. This is what is to be 
omparedwith the Godel 
ode of the 
ontra
t o�ered by k. Of 
ourse, these are the same in equilibriumbe
ause ck = ck
γ
1
,...,γm

. Sin
e this is the 
ase for all m − 1 of the other players, player i ends uptaking a
tion a∗
i . So these 
ontra
ts support the out
ome we want if everyone uses them.3For example, the predi
ate

{x1 = x1} ∧ ... ∧ {xm = xm} ∧ {y = y}de�nes c. That is, for all y ∈ N the predi
ate is true no matter how the free variables are evaluated.
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an deviate to any de�nable 
ontra
t mapping Nm into 2N. However, any su
h 
ontra
twill have a di�erent Godel 
ode, and so will indu
e the punishment {aj
i

}
i6=j

from the other players.Re
all that {aj
i

}
i6=j

is the a
tion pro�le that players other than player j use to minmax player j.Sin
e uj (a) ≥ uj any deviation will be unpro�table.One might argue that restri
ting the spa
e of 
ontra
ts to be de�nable fun
tions of Godel 
odesis both arbitrary and unnatural. Indeed, there is no reason for a judge to interpret a 
ontra
t asa des
ription of a mapping from the Godel 
odes of the 
ontra
ts o�ered by the other players tothe a
tions spa
e of the player. For that matter, the judge might not even know about the Godel
oding. It is important to note that the salient feature of de�nable 
ontra
ts is that they 
an bewritten as texts that use a �nite number of words in a formal language. The set of �nite textsseems a very natural des
ription of the set of feasible 
ontra
ts. In fa
t, from this perspe
tive itseems that any reasonable des
ription of the set of feasible 
ontra
ts should allow any su
h text.The 
ompli
ation with su
h a broad des
ription of the set of 
ontra
ts is that to properly de�nea game, one must fully des
ribe the mappings from pro�les of texts into payo�s. Many textswill be 
omplete nonsense and some modelling de
ision has to be taken about how these wouldtranslate into a
tions and payo�s. The 
ontra
ts that we spe
ify above are de�nable texts thathave two advantages in this regard. First, sin
e every �nite text has a Godel 
ode, they tie downthe a
tion of the player who o�ers su
h a 
ontra
t even if the other players in the game o�er
ontra
ts involving texts that make no e
onomi
 sense. Furthermore, if all players o�er 
ontra
tsfrom the set we spe
ify, an out
ome for every player is uniquely determined.Finally, sin
e the Godel 
oding itself is de�nable, the 
oding 
an be embedded dire
tly into the
ontra
t. So players don't need to agree to use the Godel 
ode of other 
ontra
ts. They 
an usethe Godel 
ode unilaterally, and the impli
ations of the 
ontra
t will be understood by the othersprovide they agree on the underlying language in whi
h 
ontra
ts are written.Generalizations.� Everything about this theorem involves pure strategies. This imposes limitson its appli
ation. Next, we dis
uss how to extend our result to the 
ase when players 
an mixover their restri
ted a
tion spa
e at the se
ond stage of the game but 
annot randomize over the
ontra
ts they o�er at the �rst stage. Allowing su
h mixing expands the set of payo� pro�lesthat 
an be supported by equilibria for two reasons. First, sin
e players 
an randomize 
ertain
onvex 
ombinations of payo� pro�les 
an now be supported. Se
ond, players 
an use mixing whenpunishing a deviator, and hen
e the minmax value of the players will be smaller.Formally, for all S = ×iSi, Si ⊂ Ai, de�ne a game, GS , where the a
tion spa
e of player i is Si,and the payo� fun
tion of player i is the restri
tion of ui on S. Let E (S) denote the set of mixedequilibria in GS . De�ne the minmax value of player i, u∗
i , as

u∗
i = min

S−i⊂A−i

S−i=×j 6=iSj

max
Si⊂Ai

min
σ∈E(S−i×A)

∫
ui (a) dσ (a) .



14 MICHAEL PETERS AND BALÁZS SZENTESThe idea is that in the 
ontra
ting game, players 
an restri
t their a
tion spa
es arbitrarily, hen
e,when they punish player i they 
an 
hoose S−i arbitrarily. On the other hand, their se
ond-stagea
tions must be best responses, and that is why we have to 
onsider equilibrium payo�s in therestri
ted game. An argument identi
al to the proof of Theorem 1 shows that the random allo
ation
σ ∈ ∆(A) 
an be supported as an equilibrium if(i) ∃Si ⊂ Ai for all i, su
h that σ ∈ E (×iSi), and(ii) ∫ ui (a) dσ (a) ≥ u∗

i for all i.What happens if players are allowed to randomize over the 
ontra
ts they o�er? It is possibleto show that part (i) 
an be 
ompletely relaxed. That is, the distribution over the out
omes doesnot have to be an equilibrium in GS , and it does not even have to be generated by independentrandomizations of the players. The 
onstru
tion of mixed equilibria in our 
ontra
ting game thatsupports 
orrelated out
omes is entirely based on Kalai et.al. (2008). The authors 
onsider two-person games where players submit 
ommitment devi
es instead of taking a
tions. A devi
e thendetermines the a
tion of the player as fun
tion of the other devi
e. The authors 
onstru
t a setof devi
es su
h that any individually rational 
orrelated out
ome 
an be implemented as a mixedequilibrium in the game. That is, although the players mix independently over their devi
es, thedistribution over the a
tions pro�les will be 
orrelated. It is easy to show that these results extendto n-person 
omplete information games, and in addition, the the equilibrium 
ommitment devi
es
onstru
ted by Kalai et.al. (2008) are de�nable fun
tions as long as the probabilities involved inea
h mixing are all rational numbers.Theorem 2. Suppose that σ ∈ ∆(A), and σ (a) ∈ Q for all a ∈ A. The distribution σ 
anbe supported as a mixed-strategy equilibrium out
ome in the 
ontra
ting game if and only if
∫

ui (a) dσ (a) ≥ u∗
i for all i ∈ {1, ..., m}.Another question is why we use de�nable fun
tions as opposed to programs or Turing ma
hines.One might want to require that the 
ontra
ts must be 
omputable and assume that the set ofavailable 
ontra
ts is the set (or a subset) of Turing ma
hines. In su
h a model, if player i

(i = 1, 2) 
hooses ma
hine τ i, then τ i runs on the des
ription of τ j , and the output will be a subsetof the a
tion spa
e of player i. It is well-known, that one 
an 
onstru
t self- and 
ross-referential
ontra
ts (ma
hines) in this spa
e too.4 In fa
t, this 
onstru
tion is essentially identi
al to our
onstru
tion of 
ross-referential de�nable fun
tions. Most importantly, the equilibrium 
ontra
tswe 
onstru
t to support individually rational allo
ations are, in fa
t, re
ursive fun
tions, and hen
ethey are 
omputable by Turing ma
hines. Therefore, if the reader insists on 
omputability, he 
anrestri
t attention to the spa
e of Turing ma
hines.There are, however, several advantages of our approa
h over modelling 
ontra
ts with Turingma
hines. First, Turing ma
hines do not always halt, and therefore, it is not 
lear how one 
an4Su
h ma
hines were 
onstru
ted even in the 
ontext of Game Theory, see Anderlini 1990 and Canning 1992.
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tion on the a
tion spa
e of a player, if his ma
hine does not halt. A way tohandle the halting problem is to restri
t the spa
e of Turing ma
hines to be the set of ma
hinesthat always halts. We �nd su
h restri
tions arbitrary. Instead of restri
ting the spa
e of re
ursivefun
tions, we expanded it to be the set of de�nable fun
tions and avoided the halting problem thatway. Se
ond, another problem with Turing ma
hines is that they 
an only 
ondition on the a
tualdes
ription of the ma
hines submitted by the other players but 
annot 
ondition on the fun
tionswhat the ma
hines 
ompute. Take the example of the prisoner dilemma. It is possible to 
onstru
ta Turing ma
hine, τ , su
h that
τ ([τ2]) =

{
C if [τ2] = [τ ]

D otherwise.The problem is that if player 2 submits a ma
hine, say τ ′, whi
h is 
omputationally equivalentwith τ , but has a di�erent des
ription, then player 1 would defe
t. In fa
t, it is not possibleto 
onstru
t a ma
hine whi
h does not su�er from this problem. We avoid su
h problems withde�nable fun
tions. Indeed, it is possible to express 
ontra
ts that do not 
ondition on the a
tualway the other 
ontra
t is written, but on the fun
tion itself that the other 
ontra
t des
ribes.Consider
c1 ([c2]) =

{
C if c∗2 ⇔ c2,

D otherwise.The 
ontra
t cγ is obviously de�nable, but does not 
ondition on the a
tual form of c2. As longas c2 represents the same fun
tion as c∗2, 
ooperation is pres
ribed.5. Contra
ting in a Bayesian EnvironmentIn the previous se
tion, we showed how 
ontra
tible 
ontra
ts 
an be used to support anyallo
ation for whi
h every player's payo� is at least his minmax value. Assuming non-parti
ipationis always an option, this is the set of allo
ations that is supportable by a 
entralized me
hanismdesigner. In this sense, 
ontra
tible 
ontra
ts 
ompletely de
entralize the allo
ation problem. Inthis se
tion, we show that the same result is not true in the Bayesian 
ase. We do this by proving atheorem that 
ompletely 
hara
terizes the set of allo
ation rules that 
an be supported as Bayesianequilibrium in the 
ontra
ting game. We then 
onstru
t allo
ations that 
an be supported by a
entralized me
hanism designer, but whi
h 
annot be supported as equilibria.We also show, however, 
ontra
tible 
ontra
ts make it possible for one player's a
tion in a
ontra
t equilibrium to depend on another player's type. The reason is that 
ontra
ts expli
itly
ondition a
tions on other player's 
ontra
ts, whi
h, along the equilibrium path, 
an depend ontheir types. We exploit the re
ipro
al 
ontra
ting idea des
ribed above to enfor
e type 
ontingentagreements. The idea is that a 
ontra
t will spe
ify a number of 'target' Godel 
odes, one for ea
hof the 
ontra
ts the other player's di�erent types are supposed to o�er along the equilibrium path.



16 MICHAEL PETERS AND BALÁZS SZENTESAs long as other players o�er a 
ontra
t whose 
ode is equal to one of these targets, the 
ontra
tresponds with a '
ooperative' a
tion. If any of the others deviate, the 
ontra
t will respond withsome kind of punishment.When information is 
omplete, a punishment is simply an array of 
ommitments that non-deviators make. These 
ommitments are su
h that they make all deviations unpro�table. Wewant to extend this idea to the Bayesian 
ase. There are a number of di�
ulties asso
iated withthis. First, 
ontra
t o�ers depend on player types, so they reveal information. Potential 'deviators'
an 
ondition their play on non-deviators' 
ontra
ts, so they 
an 
ondition their 
ommitments onthe non-deviators' type. Players may not want to reveal their type information at the 
ontra
tingstage for this reason. Nonetheless, they will want a
t on this type information ex post. So
ontra
ts will typi
ally bind players to subsets of their a
tions, leaving some dis
retion for themto vary their a
tions with their types ex post. So it is important to think of 
ontra
t o�ers as
ommitment 
orresponden
es, rather than simple 
ommitments to a
tions as would su�
e with
omplete information.Se
ondly, non-deviators have the ability to respond to deviations 
ontra
tually. They 
an maketheir punishments more severe by exploiting residual un
ertainty that the deviator has abouttheir type ex post. They would do this, again, by 
ommitting to a subset of a
tions instead of asingle a
tion. The punishment for a deviation 
onsists of two parts for this reason: a punishment
orresponden
e, that restri
ts the non-deviator's ex post 
hoi
e to a subset of his a
tions, and ase
ond stage strategy that depends on the non-deviator's type (
onstrained by the information thenon-deviator reveals about his type with his on path 
ontra
t).Perhaps the most 
omplex part of 
ontra
ting equilibrium is that non-deviators' responses de-pend on the deviator's 
ontra
t. As su
h they 
ould, in prin
iple, depend on the deviation insophisti
ated way. The simple logi
 that we developed for the re
ipro
al 
ontra
ting argumentabove relied on the idea that non-deviators 
ould punish deviators by minmaxing them. Theminmax a
tion doesn't depend on exa
tly how the non-
ooperative player 
hooses to be non-
ooperative. With in
omplete information, there is no natural analog for the minmax punishment.The ability to 
ontra
t on other 
ontra
ts suggests the possibility that non-deviators 
ould rea
t todeviations in a way that depends on exa
tly what the deviation is thereby holding on path payo�sto something below the 
orresponding min max payo�.A remarkable property of our theorem is to show the sense in whi
h punishments 
an be un-derstood to be invariant to the manner in whi
h a player 
hooses be non-
ooperative. We showthat any 
ontra
t equilibrium 
an be supported by having non-deviators respond to a deviationwith a 
ontra
tual 
ommitment that is independent of what the deviator 
hooses to do. Ex post
hoi
es that non-deviators make from their 
ontra
tual 
ommitment 
orresponden
es will typi
allydepend on the deviation. However, these ex post 
hoi
es aren't part of the non-deviator's 
on-tra
ts. This result allows us to extend the re
ipro
al 
ontra
ting idea to Bayesian games. If aplayer o�ers a 
ontra
t that is 
onsistent with equilibrium play by one of his types, then the other
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ooperatively. Otherwise, there is a single punishment 
orresponden
e that thenon-deviators impose, just as in the 
omplete information 
ase.This property of 
ontra
t equilibrium is a 
onsequen
e of restri
ting players to de�nable 
on-tra
ts. It is the part of our theorem that allows us to show the limits of 
ontra
tible 
ontra
ts,sin
e we 
an show the kinds of allo
ations that 
an't be supported as equilibrium. This is thepart of our theorem that we use to provide examples of allo
ations supportable by a me
hanismdesigner but not by 
ontra
table 
ontra
ts. This is the advantage we derive from spe
ifying the
ontra
t spa
e very pre
isely. An abstra
t 
ommitment spa
e su
h as the one provided in [7℄, or aspa
e of 
ontra
ts that is 
onstru
ted to have desirable properties, su
h as programs in [13℄, 
an beused to show that a large set of allo
ations 
an be supported as equilibrium allo
ations. However,in the Bayesian 
ase, a 
omplete 
hara
terization requires a demonstration that 
ertain allo
ations
annot be supported. To provide this, a 
omplete des
ription of the set of feasible 
ontra
ts isrequired. Our Lemma illustrates that de�nability provides just su
h a 
omplete des
ription.The model is the same as in the previous se
tion, with the addition of player types. There are
m players. Player i's a
tions spa
e is a �nite set denoted by Ai. Ea
h player i has a type ti drawnfrom a �nite set T i. The joint distribution types is 
ommon knowledge. The payo� of player i is
ui (ai, a−i, t) where t ∈ T1×· · ·×Tm. Noti
e that a strategy rule for player i in the Bayesian gamethe players might otherwise be involved in is an element of A

|Ti|
i .Our 
hara
terization of the set of allo
ations that 
an be supported as 
ontra
t equilibriumhinges on the information that equilibrium play reveals about players' types. Our argument refersrepeatedly to the information that is revealed through equilibrium play. Most things that happeno� the equilibrium path depend on this information. A natural way to in
orporate this is touse the information partition indu
ed by these 
ontra
ts. Fix an equilibrium, and de�ne the
orresponden
e τ i : Ti → 2Ti to mean the set of types of player i who o�er the same 
ontra
t astype ti. On
e other players see the 
ontra
t o�ered by player i of type ti, they should 
ommonlybelieve that i's type lies in the set τ i (ti). The 
orresponden
e τ i is an information partition.Similarly, the 
orresponden
e

τ−i (t−i) =
∏

j 6=i

τ j (tj)des
ribes the information available to player i about the types of the other players.Ea
h 
ontra
t spe
i�es a set of a
tions from whi
h players subsequently 
hoose. In this sense,equilibrium 
ontra
ts support a 
ommitment 
orresponden
e for ea
h player. As 
ontra
ts dependon other 
ontra
ts, whi
h in turn depend on other players' types, this 
ommitment 
orresponden
e
an be written as a mapping ri : T → 2Ai . Sin
e the set from whi
h i 
hooses his a
tion 
an onlydepend on some other player's type to the extent that the other player's 
ontra
t varies with histype, ri should be measurable with respe
t to the information partition τ−i.Contra
ts spe
ify sets of feasible a
tions. Ultimately, payo�s are determined by players' 
hoi
esfrom these sets in the �nal stage of the game. Let si : T → Ai denote the out
ome fun
tion
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iated with the se
ond stage strategies.5 These out
ome fun
tions must have the propertythat si (t) lies in the set ri (t) for ea
h t. It might seem strange that this out
ome fun
tion shoulddepend on t instead of ti. The reason that player i's equilibrium a
tions depend on the types ofother players is twofold. First, player i gets to see the 
ontra
ts o�ered by ea
h of the other players.His beliefs vary as the other players' 
ontra
ts vary, so his a
tions in the se
ond stage will varywith the other players types. Se
ondly, his own 
ommitments depend on the 
ontra
ts, and thusthe types of the other players. Evidently, player i only observes types imperfe
tly by observingthe 
ontra
ts that are o�ered. This is 
aptured simply by observing that this indu
ed out
omefun
tion must be measurable with respe
t to the information partition τ−i.Ea
h o� equilibrium 
ontra
t o�ered by a deviator spe
i�es a 
ommitment for ea
h array of
ontra
ts o�ered by the other players. Sin
e the 
ontra
ts the other players o�er depend on theirtypes, a deviation implies a 
ommitment 
orresponden
e fi : T−i → 2Ai . Sin
e these types arerevealed only through the 
ontra
ts that the others o�er, this 
orresponden
e should be measurablewith respe
t to the information partition τ−i that 
aptures this information. Let Fi be the set ofall 
ommitment 
orresponden
es available to the deviator, i.e., Fi is the set of all τ−i measurablemappings from T−i into 2Ai .In a 
ontra
t equilibrium, a deviation leads to two sorts of 'punishments'. First, sin
e the otherplayers' 
ontra
ts spe
i�
ally 
ondition on the 
ontra
t o�ered by the deviator, the non-deviatorswill 
hange their 
ommitments. As mentioned above, we are going to show that the punishment
orresponden
e asso
iated with this 
hange in 
ommitments 
an be taken to be independent of thedeviation fi. However it is possible that the way that the non-deviators 
hoose from sets to whi
hthey have 
ommitted themselves will depend on fi.Write the 'punishment' that player j imposes when player i deviates as pi
j : T−i → 2Ai and

pi =
∏

j 6=i pi
j . In a 
ontra
t equilibrium, this punishment is the 
onsequen
e of the 
ontra
t that

j has written, so the punishment 
an only vary with j's type to the extent that j's 
ontra
t does.As a 
onsequen
e, this punishment will be measurable with respe
t to the information partition
τ−i.Finally, we need to des
ribe the non-deviators' behavior in the ex post stage, let si

j : Fi ×

T−i → Aj . The non-deviator j 
an no longer 
ondition his behavior on information revealed by i'sequilibrium behavior. However, he does observe i's 
ommitment 
orresponden
e in the sense thathe observes the deviator's 
ontra
t. He also observes the on equilibrium 
ontra
ts of the others.This is 
aptured, as always, by requiring that his behavior be measurable with respe
t to τ−ij . The5To simplify the argument slightly, we fo
us on pure strategy out
omes here. It is 
ompletely trivial to extendthis argument to out
omes that involve randomization at the se
ond stage by having the out
ome fun
tions bemappings from T into △ (Ai), restri
ting the supports of these mappings to lie in ri (t), then letting ui (s (t) , t) bethe expe
ted utility asso
iated with the randomization. With this notation, the inequalities that 
hara
terize theequilibrium remain un
hanged.
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tion si
j (fi, t−i) should be 
ontained in pi

j (t−i) for every t−i ∈ T−i and fi ∈ Fi.6 Let si =
∏

j 6=i si
jbe the out
ome fun
tion asso
iated with a deviation. for ea
h i = 1, . . .m,The theorem is based on a pair of inequalities that are based on the obje
ts de�ned above. The�rst 
aptures the idea that no player wishes to mimi
 the equilibrium behavior of another of hisown types. For ea
h i = 1, . . .m, and ea
h ti and t′i

Et−i
(ui (s (t) , t) : ti)(5.1) ≥ Et−i

(
max

ai∈ri(t′
i
,t−i)

Et′−i

(
ui

(
ai, s−i

(
t′i, t

′
−i

)
,
(
ti, t

′
−i

))
: t′−i ∈ τ−i (t−i)

)
: ti

)
.The 
ommitment 
orresponden
e ri results in a 
olle
tion of a
tions from whi
h player i is 
ommit-ted to 
hoose in the se
ond stage. This 
hoi
e set 
an depend on the types of the others be
ausetheir 
ontra
ts do. The max operator on the right hand side requires the player to 
hoose a bestreply from this set given posterior beliefs. Taken together, these 
onstraints for all the playersrequires that play in the se
ond stage 
onstitutes a Bayesian equilibrium of the game in whi
hea
h player 
hooses an a
tion from the set of a
tions to whi
h he is 
ommitted, given posteriorbeliefs about players' types.To deal with deviations at the 
ontra
ting stage of the game, we require that for ea
h ti ∈ T

Et−i
(ui (s (t) , t) : ti) ≥(5.2) max

fi∈Fi

Et−i

(
max

a∈fi(t−i)
Et′−i

(
ui

(
a, si

(
fi, t

′
−i

)
,
(
ti, t

′
−i

)
, t
)

: t′−i ∈ τ−i (t−i)
)

: ti

)
.A deviation implies a 
ommitment 
orresponden
e fi. The inequality says that even if the deviator
hooses a best reply from the set of a
tions to whi
h he is 
ommitted, he 
annot gain by deviating.So far we have imposed no restri
tions on se
ond stage punishment behavior. In appli
ations itis natural to want behavior in the se
ond stage to be 
onsistent with some re�nement like perfe
tBayesian equilibrium. Our theorem works with most standard re�nements but does not dependon them. To illustrate, let Ã1, . . . , Ãm be a 
olle
tion of subsets of the players a
tion sets and let

T̃−i be a subset of T−i. The interpretation of these obje
ts is that some player i has deviated froman equilibrium. Contra
ts 
onstrain the players to 
hoose from the sets Ãi in the se
ond stage,while it is 
ommon belief that the non-deviators' types lie in T̃−i. Let Ri

[
Ã1, . . . , Ãm, T̃−i

] bethe subset of a
tions in Ã−i that are 
onsistent with some re�nement. For example in a (unre-�ned) Bayesian equilibrium, Ri

[
Ã1, . . . , Ãm, T̃−i

]
= Ã−i. A slightly stronger re�nement mighthave Ri

[
Ã1, . . . , Ãm, T̃−i

] ruling out a
tions that are stri
tly dominated given that players are
onstrained to 
hoose a
tions in Ã1, . . . , Ãm. Finally, 
onsistent with the idea of perfe
t Bayesianequilibrium, Ri might 
ontain only a
tions that are 
onsistent with Bayesian equilibrium in the6If mixing is allowed in the last stage, then the support of si
j (fi, t−j) should be 
ontained in pi

j (t
−i).



20 MICHAEL PETERS AND BALÁZS SZENTESgame de�ned by subsets Ã1, . . . , Ãm , 
ommon belief that the non-deviators' types lie in T̃−i andsome belief about the deviator i. We will 
all a Bayesian equilibrium in 
ontra
ts an R-equilibriumif following ea
h array of 
ontra
t o�ers for whi
h player i's 
ontra
t is in
onsistent with his equi-librium strategy and all other players 
ontra
t o�ers are 
onsistent with the equilibrium strategiesof players whose types lie in T̃−i, 
ontinuation play lies in Ri

[
Ã1, . . . , Ãm, T̃−i

] where the Ãj arethe 
ontra
tual 
ommitments of ea
h of the players. We 
an now state our main theorem.Theorem 3. An allo
ation rule s : T → A 
an be supported as anR-equilibrium in 
ontra
ts if andonly if there is a 
ommitment 
orresponden
e r, a 
olle
tion of information partitions {τ i}i=1,...,m,punishments {pi
}

i=1,...,m
, and out
ome fun
tions {si

}
i=1,...,m

su
h that r is measurable withrespe
t to τ =
∏

τ i, ea
h pi is measurable with respe
t to τ−i, the support of s (t) is 
ontainedin r (t) for ea
h t, si (fi, t−i) ∈ Ri

[
fi (t−i) , pi (t−i) , τ−i (t−i)

] for ea
h fi and t−i , and (5.1) and(5.2) are satis�ed.One of the key properties of this theorem is to show that when 
ontra
ts are de�nable, equi-librium must support a single punishment 
orresponden
e of exa
tly the kind we have des
ribed.Spe
i�
ally, it is a punishment 
orresponden
e that is independent of f . This is 
entral to there
ipro
ity idea that we developed at the beginning of the paper. Un
ooperative behavior by oneplayer provokes a punishing 
ontra
tual response from the others that doesn't depend on exa
tlyhow the deviator goes about being un
ooperative. We want to show that it is the se
ond stage
ommitments that 
apture this property of re
ipro
ity.7 This property of 
ontra
t equilibrium isalso very surprising. It might seem that 
ontra
t equilibrium 
ould be supported with very 
om-pli
ated 
ontra
ts that punish deviators in a way that is sensitive to exa
tly how they deviate. Weshow that this is not the 
ase.Finally, the theorem is written assuming that players use pure strategies at every stage. Theprimary reason we assume away mixed strategies is so that we 
an use an information partition torepresent players knowledge at the se
ond stage instead of a more 
omplex measure of information.We assume pure strategies in the se
ond stage simply for 
onsisten
y. It is 
ompletely trivial toextend the theorem to allow randomization at the se
ond stage. This involves nothing more thanassuming that si
i (fi, t−i) are mixtures on Aj whose support is 
ontained in pj

j (t−i), then rede�ning
ui (s, t) to be expe
ted utility asso
iated with the mixture s when s ∈ △ (A). The theorem andproof then pro
eed verbatim. 6. Proof of Theorem 3We write the proof in three parts. The �rst part shows the 'if' part of the theorem. It is ageneralization of the re
ipro
al 
ontra
ting idea presented above. Before going on to the moredi�
ult 'only if' part, we prove the Lemma that is interesting for its own sake, and whi
h formsthe basis of the se
ond part of our proof. Finally, we give the proof of the only if part.7Care here is needed to observe that se
ond stage behavior does depend on the deviation in the �rst stage.



DEFINABLE AND CONTRACTIBLE CONTRACTS 216.1. If Part:Proof. Suppose that {s, τ , r,
{
pi
}

,
{
si
}} satisfy (5.1) and (5.2). We 
onstru
t a Bayesian equilib-rium in the 
ontra
ting game whi
h implements the allo
ation s. Let x denote (xtj

j

)
j∈{1,...,m}, tj∈Tj

,where x
tj

j denotes a free variable. Consider the following 
ontra
t in |T | free variables:
cti
x ([c1] , ..., [cm])

=





ri (t) if ∀k∃xtk

k ∈
{
xtk

k : tk ∈ Tk

} s.t. [< xtk

k >(x)
]

= [ck] ,

pj
i (t−j) if {k : ∄xtk

k ∈
{
xtk

k : tk ∈ Tk

} s.t. [< xtk

k >(x)
]

= [ck]
}

= j,

Ai otherwise and if k + 1 > k if k ∈ {j : τ (tj) = τ (ti)} ,The last statement is in the third line is always true. Su
h a statement, however, makes it possiblethat a player with two di�erent types o�ers two di�erent but 
omputationally equivalent 
ontra
ts.Let γti

i denote the Godel Code of this 
ontra
t and let γ =
(
γti

i

)
i,ti . The equilibrium 
ontra
to�ered by player i with type ti will be: cti

γ . Then
cti

γ ([c1] , ..., [cm])

=





ri (t) if ∀k∃tk ∈ Tk s.t. [< γtk

k >(γ)
]

= [ck] ,

pj
i (t−j) if {k : ∄tk ∈ Tk s.t. [< γtk

k >(γ)
]

= [ck]
}

= j,

Ai otherwise and if k + 1 > k if k ∈ H (ti) ,Noti
e that < γ
tq

q >(γ)= c
tq

γ . Therefore, the previous 
ontra
t 
an be rewritten as
cti

γ ([c1] , ..., [cm])(6.1)
=





ri (t) if ∀k∃tk ∈ Tk s.t. [ctk
γ

]
= [ck] ,

pj
i (t−j) if {k : ∄tk ∈ Tk s.t. [ctk

γ

]
= [ck]

}
= j,

Ai otherwise and if k + 1 > k if k ∈ H (ti) ,Next, we spe
ify the strategies of the players at the se
ond stage. If for all j there is a tj ∈ Tjsu
h that player j o�ers a 
ontra
t c
tj

γ , then Player i takes a
tion si (t). Suppose now that oneplayer deviated, say Player k, and he o�ered a 
ontra
t ck, and player j o�ered c
tj
γ for all j 6= k.De�ne fk : T−k → 2Ak as follows:(6.2) fk (t−k) = ck

([
ck
]
,
[
ctj

γ

]
j 6=k

) ,where [ctj

γ

]
j 6=k

denotes the ve
tor of the Godel 
odes of players other than k. De�ne player i'sstrategy as sk
i (fk, t−k). Noti
e that by (6.1) these se
ond-stage strategies are 
onsistent with therestri
tions imposed by the 
ontra
ts and the re�nementRk, that is, si (t) ∈ ri (t) and sk (fk, t−k) ∈

Rk

[
fk (t−k) , pk (t−k) , τ−k (t−k)

]. (We do not have to spe
ify the strategies if more than oneplayers deviate at the 
ontra
ting stage.)We shall argue that the strategies des
ribed above 
onstitute an R−equilibrium in the 
ontra
t-ing game. First, we show that the strategies {si}
m
i=1 are optimal in the se
ond stage. Consider
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onstraint (5.1) with ti = t′i. This 
onstraint requires si (t) to be a best response to the strategiesof the other players. It remained to show that players do not have in
entive to deviate at the
ontra
ting stage. Suppose that player k with type tk o�ers a 
ontra
t ck whi
h is di�erent from
ctk
γ . We shall 
onsider two 
ases. Case 1: ck = c

t′k
γ but τk (tk) 6= τk (t′k). Then, by (5.1), thisdeviation is not pro�table no matter what the strategy of player k is at the se
ond stage. Case 2:

ck 6= c
t′k
γ for all t′k ∈ Tk. Su
h a deviation indu
es player i with type ti to take a
tion sk

i (fk, t−k).Hen
e, by (5.2) su
h a deviation 
annot be pro�table.6.2. Invariant punishment 
orresponden
e. The point of this se
tion is to show the existen
eof the punishment 
orresponden
e pi. A deviator 
ontemplates di�erent 
ommitment 
orrespon-den
es fi. What this Lemma shows is that there has to existen
e some �xed punishment 
orre-sponden
e pi (t−i) su
h that no matter whi
h 
ommitment 
orresponden
e the deviator want toimplement, there must be a way for him to write his 
ontra
t in su
h a way that the response of thenon-deviators is exa
tly the same, and is given by this 
orresponden
e pi. This is a 
onsequen
eof the fa
t that 
ontra
ts are required to be de�nable fun
tions.Let cti

i denote the 
ontra
t of Player i with type ti. De�ne τ (t) =
{
t′ ∈ T : ∀i cti

i = c
t′i
i

}.Lemma 4. For any array {cti

i

}
i=1,...,m, ti∈T i of 
ontra
ts and every i, there are τ−i measurablefun
tions, pi

k (t−i) for all k 6= i, su
h that for any τ−i measurable fun
tion fi : T−i → 2Ai , thereis a 
ontra
t c∗i su
h that(6.3) c∗i

(
[c∗i ] ,

([
c
tj

j

])
j 6=i

)
= f (t−i)and for all k 6= i(6.4) ctk

k

(
[c∗i ] ,

([
c
tj

j

])
j 6=i

)
= pi

k (t−i) .In a 
ontra
t equilibrium, a player expe
ts his opponents to o�er the 
ontra
ts c
tj

j . Ea
halternative 
ontra
t that he o�ers against this array indu
es a 
ommitment 
orresponden
e f (t−j)and eli
its some kind of response. The Lemma shows that provided the 
ontra
ts the others o�erare all de�nable fun
tions, there must exist some 
olle
tion of punishment 
orresponden
es {pi
k

}su
h that for any 
ommitment 
orresponden
e that player i wants, he 
an write his own 
ontra
tin su
h a way that the others respond with exa
tly the same punishment {pi
k

}.First, we reformulate the statement of the lemma. Let (Ai)
|T−i|
τ denote the set of |T−i| dimen-sional ve
tor of subsets of Ai whi
h are measurable with respe
t to τ−i, that is,

(Ai)
|T−i|
τ =

{(
A

t−i

i

)
t−i∈T−i

: A
t−i

i ∈ Ai and A
t−i

i = A
t′−i

i if τ−i (t−i) = τ−i

(
t′−i

)}
.For all (Aτ−i(t−i)

i

)
t−i

⊂ (Ai)
|T−i| de�ne S

((
A

τ−i(t−i)
i

)
t−i

) as follows:
{(

A
τ−i(t−i)
−i

)
t−i

: A
τ−i(t−i)
−i ⊂ A−i, ∃ci s. t. ci

(
[ci] ,

[
c
t−i

−i

])
= A

τ−i(t−i)
i , c

t−i

−i

(
[ci] ,

[
c
t−i

−i

])
= A

τ−i(t−i)
−i

} .
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τ−i(t

t−i)
−i

)

t−i

∈ S

((
A

τ−i(t−i)
i

)
t−i

). By the de�nition of S,there exists a 
ontra
t, ci, available for player i su
h that if the type pro�le of the other playersis t−i, then if player i o�ers ci then his restri
ted a
tion spa
e will be A
τ−i(t−i)
i and players −i'srestri
ted a
tions spa
e will be A

τ−i(t−i)
−i . We 
laim that the statement of the lemma is equivalentto(6.5) ∩

A
τ−i(t−i)
i

ff

t−i

S

({
A

τ−i(t−i)
i

}
t−i

)
6= {∅} .To see this, suppose �rst that the previous displayed statement is true, and (Aτ−i(t−i)

−i

)
t−i

isan element of the interse
tion. De�ne pk
i (t−i) to be A

τ−i(t−i)
−i for all k 6= i and t−i ∈ T−i.For a τ−i measurable fun
tion fi : T−i → Ãi, 
onsider S
(
(fi (t−i))t−i

). Sin
e (pk
i (t−i)

)
t−i

∈

S
(
(fi (t−i))t−i

), and by the de�nition of S, there exists a c∗i su
h that (6.3) and (6.4) are satis�ed.Conversely, suppose that (6.5) is not true. Then, for all {pk
i (t−i)

}
k 6=i

τ−i measurable fun
tionsthere exists {A
τ−i(t−i)
i

}
t−i

∈ (Ai)
|T−i|, su
h that

(
p−i

i (t−i)
)
t−i

/∈ S

({
A

τ−i(t−i)
i

}
t−i

) ,where pi
i (t−i) =

(
pk

i (t−i)
)
k 6=i

. Then if fi (t−i) is de�ned to be A
τ−i(t−i)
i for all t−i ∈ T−i, theredoes not exist a 
ontra
t c∗i su
h that (6.4) is satis�ed.Proof. Suppose by 
ontradi
tion that ∩

A
τ−i(t−i)
i

ff

t−i

S

({
A

τ−i(t−i)
i

}
t−i

)
= {∅}. Then, for all

{
A

τ−i(t−i)
−i

}
t−i

⊂
(
A−i

)|T−i| there exists an {A
τ−i(t−i)
i

}
t−i

⊂
(
Ai
)|T−i| su
h that {A

τ−i(t−i)
−i

}
t−i

/∈

S

({
A

τ−i(t−i)
i

}
t−i

). Let us �x a fun
tion f : 2(A−i)|T−i|

→ 2(Ai)|T−i| su
h that
∀
{
A

τ−i(t−i)
−i

}
t−i

⊂
(
A−i

)|T−i|
:
{
A

τ−i(t−i)
−i

}
t−i

/∈ S

(
f

({
A

t−i

−i

}
t−i

)) .Let fτ−i(t−i) denote the proje
tion of f 
orresponding to t−i. That is, f =
{
fτ−i(t−i)

}
t−i

. De�ne
cx as follows:

cx (c) =





ft′−i

({
cτ−i(t−i) ([< x > (x)])

}
t−i

) if ∃t′−i ∈ T−i st. c = c
τ−i(t′−i)

,

Ai otherwise.Sin
e f and cτ−i(t−i) are de�nable fun
tions, cx is a de�nable fun
tion in one free variable. Let γdenote its Godel 
ode. Then
cγ (c) =





f
τ−i(t′−i)

({
cτ−i(t−i) ([cγ ])

}
t−i

) if ∃t′−i ∈ T−i st. c = c
τ−i(t′−i)

,

Ai otherwise. .
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e that(6.6) {
cτ−i(t−i) ([cγ ])

}
t−i

∈ S
({

cγ

([
cτ−i(t−i)

])}
t−i

)by the de�nition of S. On the other hand,
{
cγ

([
cτ−i(t−i)

])}
t−i

=

{
ft−i

({
c
τ−i(t′−i)

([cγ ])
}

t′−i

)}

t−i

= f
({

cτ−i(t−i) ([cγ ])
}

t−i

)
,and therefore,(6.7) {

cτ−i(t−i) ([cγ ])
}

t−i
/∈ S

({
cγ

([
cτ−i(t−i)

])}
t−i

)by the de�nition of f . Noti
e that (6.6) and (6.7) 
ontradi
t to ea
h others, and hen
e the (6.5)holds.6.3. Only if part of the proof of Theorem 3.Proof. Fix an equilibrium in the 
ontra
ting game. We shall 
onstru
t the obje
ts τ , s, {ri}
m
i=1 ,

{
si
}m

i=1
,and {pi

}m

i=1
su
h that the 
onstraints (5.1) and (5.2) are satis�ed. Denote the equilibrium 
ontra
tof Player i with type ti by cti

i . De�ne the partition, τ , as follows:
τ (t) =

{
t′ ∈ T : ∀i cti

i = c
t′i
i

} .Next, we 
onstru
t the fun
tions {ri}
m
i=1. Let(6.8) ri (t) = cti

i

([
cti

i

]
,
([

c
tj

j

])
j 6=i

)
,for all i ∈ {1, ..., m}. Noti
e that ri (t) ∈ 2Ai. In addition, ri is measurable with respe
t to τ−i bythe de�nition of τ . The se
ond-stage strategies depend on the 
ontra
ts o�ered at the �rst stage.First, we deal with strategies on the equilibrium path. Let qti

i

(([
c
tj

j

])
j 6=i

) denote the se
ondstage strategy of Player i with type ti. Observe that(6.9) qti

i

(([
c
tj

j

])
j 6=i

)
∈ cti

i

([
cti

i

]
,
([

c
tj

j

])
j 6=i

)must be satis�ed a

ording to the rules of the 
ontra
ting game. De�ne si (t) to be qti

i

(([
c
tj

j

])
j 6=i

).The fun
tion si (t) is obviously measurable with respe
t to τ−i. In addition, si (t) ∈ ri (t) by (6.8)and (6.9). Let s (t) denote (s1 (t) , ..., sm (t)).We are ready to show that the triple (τ , {ri} , s) satisfy (5.1). First, 
onsider this 
onstraint with
t′i = ti. Then, this 
onstraint requires qti

i

(([
c
tj

j

])
j 6=i

) to be a best-response of player i to thestrategies of the other players. Sin
e qti

i was an equilibrium strategy, it has to be a best responseand hen
e, (5.1) is indeed satis�ed. Se
ond, 
onsider (5.1) with t′i 6= ti. Then, this 
onstraintrequires player i with type ti to prefer to o�er 
ontra
t cti

i instead of c
t′i
i . Indeed, the left-hand-sideis just his equilibrium payo� and the right-hand-side is the maximum payo� of player i with type
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ti if he o�ered c

t′i
i . Sin
e, cti

i was an equilibrium 
ontra
t, su
h a deviation 
annot be pro�tableand hen
e, (5.1) is satis�ed.It remains to 
onstru
t {pi}
m
i=1 and {si

}m

i=1
and show that (5.2) is also satis�ed. De�ne pi

k (t−i)for all k 6= i and for all i ∈ {1, ..., m} a

ording to the statement of Lemma 4. In addition, let cfi

idenote the 
ontra
t of Player i su
h that
cfi

i

([
cfi

i

]
,

([
c
tj

j

]
j 6=i

))
= fi (t−i)and for all k 6= i

ctk

k

([
cfi

i

]
,

([
c
tj

j

]
j 6=i

))
= pk

i (t−i) .Let qi
k

(
fi,

([
c
tj

j

]
j 6=i

)) denote the o�-equilibrium strategy of player k when player i unilater-ally deviates to 
ontra
t cfi

i . De�ne si
k (fi, t−i) to be qi

k

(
fi,

([
c
tj

j

]
j 6=i

)). The fun
tion si
k ismeasurable with respe
t to τ−ik (t−ik). Given these notations, (5.2) requires that player i 
an-not pro�tably deviate by o�ering an o�-equilibrium 
ontra
t in the form of cfi

i , and hen
e, this
onstraint is satis�ed. Finally, sin
e qi
k is an o� equilibrium strategy in an R-equilibrium, so

{
qi
k

(
fi,

([
c
tj

j

]
j 6=i

))}

k 6=i

∈

Ri

[
cfi

i

([
cfi

i

]
,

([
c
tj

j

]
j 6=i

))
, c

t−i

−i

([
cfi

i

]
,

([
c
tj

j

]
j 6=i

))
, τ−i (t−i)

]
=

Ri [fi (t−i) , pi (t−i) , τ (t−i)]and the re�nement 
ondition is satis�ed.6.4. Example 1 - making a
tions depend on types. The following examples illustrate theproperties of the 
ontra
ting equilibrium in the Bayesian 
ase. The �rst example, illustrates how
ontra
ting equilibrium 
an be used to make one player's a
tion depend on another player's type.This is something that 
annot be a

omplished in the Bayesian equilibrium of the original game.In this example, the row player is privately informed and has one of two equally likely types, t1and t2. Ea
h player has two possible a
tions in the default Bayesian game, {a1, a2} for the rowplayer, {b1, b2} for the 
olumn player. The payo�s for ea
h of the row player's types are given inthe following tables:
b1 b2

a1 3, 3 −1, 4

a2 0,0 0, 0

b1 b2

a1 0,0 0,0
a2 −1, 4 3, 3

.This is a relatively simple 
oordination problem, save two things - the way the players want to
oordinate depends on the row player's type, and if the 
olumn player learns the row player's type,his weakly dominate a
tion is in
onsistent with the 
oordinated out
ome. The unique Bayesianequilibrium has player 1 using a
tion a1 if his type is t1 and a
tion a2 if his type is t2. The 
olumn



26 MICHAEL PETERS AND BALÁZS SZENTESplayer randomizes with equal probability between his two a
tions. The expe
ted payo�s to the
olumn player are 3
2 , the expe
ted payo� to the row player is 1 for ea
h of his types.A me
hanism designer 
an implement the 
oordinated out
ome s (t1) = (a1, b1) and s (t2) =

(a2, b2) by simply asking the informed agent his type, then instru
ting the uniformed agent whi
hof his a
tions to take. If either player refuses to parti
ipate, then they simply play the Bayesianequilibrium des
ribed above. The allo
ation is in
entive 
ompatible and individually rational fromthe me
hanism designer's perspe
tive.To show that the allo
ation rule s is implementable as a 
ontra
t equilibrium, de�ne the 
om-mitment 
orresponden
e r1 (t1) = {a1}, r1 (t2) = {a2}, r2 (t1) = {b1}, r2 (t2) = {b2}. This
ommitment 
orresponden
e is measurable with respe
t to full information and implements theallo
ation s sin
e players never have any 
hoi
es to make ex post. It is in
entive 
ompatible soit will be implementable if there is a type 
ontingent punishment that the row player 
an imposethat makes it unpro�table for the 
olumn player to try to exploit this type information.8 This isevidently the punishment p1 (t1) = {a2} and p1 (t2) = {a1}, sin
e this holds the 
olumn player'spayo� to zero no matter what he does.It might help at this point to des
ribe the way the 
ontra
t equilibrium works in this example.The informed player writes a di�erent 're
ipro
al' 
ontra
t for ea
h of his possible types. These
ontra
ts both spe
ify the same target Godel 
ode, say n∗. The 
ontra
t for type t1 says that ifthe Godel 
ode of the uninformed player's 
ontra
t is n∗, then the informed player will 
ommit toa
tion a1. If the Godel 
ode of the uninformed player's 
ontra
t is anything else, then the informedplayer of type t1 will 
ommit to a
tion a2. The 
ontra
t for t2 is similar with the a
tions reversed.En
oding these 
ontra
ts gives a pair of Godel 
odes, say m1 and m2, 
orresponding to ea
h ofthe informed player's possible 
ontra
ts. The uninformed player writes a 
ontra
t that says thatif the Godel 
ode of the informed player's 
ontra
t is m1, then he will 
ommit to b1, if the Godel
ode of the informed player's 
ontra
t is m2, then he will 
ommit to b2, otherwise he will 
ommitto {b1, b2} and 
hoose among them ex post. The theorem above shows that there is a triple ofintegers (n∗, r1, r2) su
h that the Godel 
ode of the uninformed player's 
ontra
t is n∗.6.5. Example 2: 
ontra
t equilibrium doesn't do as well as a me
hanism designer.In the example just des
ribed, the 
ontra
t equilibrium supports everything that a me
hanismdesigner might want to implement. However, as we mentioned in the introdu
tion to this se
tion,
ontra
t equilibrium imposes a restri
tion on feasible allo
ations. When a player de
ides to deviate,he knows that he will learn something about the types of the other players when he sees their
ontra
ts. In addition, sin
e he 
an 
ondition his behavior on 
ontra
ts, he 
an make his deviationdepend on this type information.To illustrate the limitations that this imposes, 
onsider the following variant of the examplegiven above. There are again two players ea
h with two possible a
tions. The row player has8Of 
ourse, the uninformed player must also spe
ify a punishment. For simpli
ity, we spe
ify it below.



DEFINABLE AND CONTRACTIBLE CONTRACTS 27two possible types, either t1 or t2, whi
h are equally likely. The 
olumn player has no privateinformation. The payo�s for ea
h of the informed player's possible types are given in the followingtables:
b1 b2

a1 3, 3 −1, 4

a2 0, 4 2,−1

and b1 b2

a1 2,−1 0, 4

a2 −1, 4 3, 3

.The Bayesian equilibrium of this default game has ea
h player randomizing with equal probabil-ity over ea
h of his a
tions no matter what his information. The informed (row) player has payo�1 in this equilibrium no matter what his type, while the uninformed 
olumn player has payo� 5
2 .The Myerson me
hanism designer has no problem implementing the allo
ation s (t1) = (a1, b1) and

s (t2) = (a2, b2). He does this by inviting the players to parti
ipate in a me
hanism in whi
h heasks the row player to report his type. If he reports t1 then he instru
ts the players to use a
tions
a1 and b1, and similarly when type t2 is reported. By agreeing to parti
ipate, the players 
ommitthemselves to follow the me
hanism designer's instru
tion. This is in
entive 
ompatible be
ausethe row player's payo� falls from 3 to 2 if he misreports his type. The allo
ation is individuallyrational in the usual me
hanism design sense as long as a refusal to parti
ipate by either playerresults in both players playing the (unique) Bayesian equilibrium of the original game.This allo
ation rule 
annot be implemented as a 
ontra
t equilibrium. A

ording to Theorem 3,to implement it, there must be a type 
ontingent 
ommitment that the row player 
an make, andsome spe
i�
ation of the row player's a
tions ex post that hold the 
olumn players payo� below
3 when he simply 
ommits to 
hoose his from his possible a
tions b1 and b2 ex post. To see thatthere is no su
h punishment, observe that if π is the probability with whi
h the row player usesa
tion a1 in the ex post game, then the 
olumn player's payo� when the row player has type 1 is

max [π3 + (1 − π) 4, π4 − (1 − π)] =

max [4 − π, 5π − 1] ≥
19

6
.The argument is identi
al when the row player has type 2. No su
h punishment exists. Thus byTheorem 3, there is no 
ontra
t equilibrium that supports this out
ome.As before, if there were a 
ontra
t equilibrium that 
ould support this out
ome, then the 
olumnplayer has to take an a
tion that depends on the row player's type. In prin
iple, he 
an do thisbe
ause he 
an 
ommit himself to an a
tion that depends on the row player's 
ontra
t, whi
h inturn depends on the row player's type. However if the 
olumn player knows that the 
ontra
t willreveal the row player's type, then a deviation to a 
ontra
t that simply allows the 
olumn playerto take his a
tion ex post has to be pro�table.6.6. Payo�s lie between the Bayesian equilibrium and those implementable by a me
h-anism designer. This �nal example is intended to illustrate a number of things. First, it showsthat the 
ontra
t equilibrium implements stri
tly more than the Bayesian equilibrium of the default



28 MICHAEL PETERS AND BALÁZS SZENTESgame, but less than what is implementable by a me
hanism designer. Se
ond, it has non-degenerate
ommitment and punishment 
orresponden
es, both of whi
h are type dependent.The example also illustrates how randomization 
an be in
orporated into the �nal stage of the
ontra
ting pro
ess when players 
hoose a
tions from their 
ommitment 
orresponden
es. We haveignored randomization in the statement of our main theorem to simplify. This example illustrateshow the extension works.The row player has three equally likely types supporting payo�s given in the following tables:
t1 b1 b2

a1 3, 3 −1, 4

a2 0, 4 2,−1

t2 b1 b2

a1 2,−1 0, 4

a2 −1, 4 3, 3

t3 b1 b2

a1 −2,−2 4,−1

a2 0, 4 2, 11
4The payo�s in the �rst two boxes are the same as they were in the se
ond example dis
ussedabove. The unique Bayesian equilibrium for this game has the uninformed player randomizingequally between b1 and b2. The informed player randomizes equally when his types are t1 and

t2, but 
hooses a1 with probability 5
9 when his type is t3. The payo� to the informed player is 1no matter what his type, while the payo� to the uninformed player is 2. A Myerson me
hanismdesigner 
an implement the allo
ation rule s (t1) = (a1, b1), s (t2) = s (t3) = (a2, b2) exa
tly as hedoes in the �rst example, by asking the informed player his type, then telling both players whata
tions to take. This allo
ation 
an't be supported as a 
ontra
t equilibrium. The argument isexa
tly as in the se
ond example above, sin
e the 
ontra
t equilibrium has to enfor
e di�erenta
tions when the row players types are t1 and t2.However, the allo
ation in whi
h both players randomize equally between their a
tions whenthe row player has type 1 or type 2, while the a
tions a2 and b2 are taken when the row playerhas type 3 
an be supported as a 
ontra
t equilibrium. This allo
ation is measurable with respe
tto the information partition {{t1, t2} , {t3}} so the 
ommitment and punishment 
orresponden
es
an depend on the row player's type. In parti
ular, the 
ommitment 
orresponden
e we want is

r1 (t1) = r1 (t2) = {a1, b1}, r1 (t3) = {a2}, while r2 (t1) = r2 (t2) = {b1, b2} and r2 (t3) = {b2}. Thepunishment 
orresponden
e for the row player is again multi-valued p1 (t1) = p1 (t2) = {a1, a2},while p1 (t3) = {a1}. The 
olumn player punishes with {b1, b2} for all deviations.The behavior to be supported involves randomization among the 
hoi
es in the 
ommitment
orresponden
e. This 
an be in
orporated in a straightforward way by requiring that the mappings
s (t) and si (t−i) have their range in the set of mixtures over a
tions whose support lies within theappropriate 
ommitment 
orresponden
e. So in the example, si (t1) =

{
1
2 , 1

2

}
= si (t2) while

si (t3) = {0, 1} for i = c, r. The behavior during the punishment phase is de�ned similarly.Consider the 
ase where the 
olumn player deviates. Let sc (f, t1) = sc (f, t2) =
{

1
2 , 1

2

} forea
h f , and sc (f, t3) = {1, 0} as is required by the punishment 
orresponden
e. A deviationis a type 
ontingent 
ommitment f that has to be measurable with respe
t to the informationpartition {{t1, t2} , {t3}}. As an example, take f (t1) = {b1, b2} = f (t3) while f (t3) = {b1}. The



DEFINABLE AND CONTRACTIBLE CONTRACTS 29punishment has to make this and all other measurable type 
ontingent 
ommitments unpro�tablegiven the 
olumn player's interim beliefs. It is straightforward to 
he
k that it a

omplishes this.One way to implement this in a 
ontra
t equilibrium is to have the row players types t1 and t2both o�er the same 
ontra
t whi
h 
ommits them to {a1, a2} whatever 
ontra
t the 
olumn playero�ers. When the row player has type t3 he o�ers a 
ontra
t that 
ommits him to a2 if the 
olumnplayer o�ers a 
ontra
t whose Godel 
ode is equal to some target n∗
c , but 
ommits to a1 againstany other Godel 
ode. The Godel 
ode of this 
ontra
t is, say n∗

3. The 
olumn player o�ers a
ontra
t that 
ommits to b2 if the Godel 
ode of the row player's 
ontra
t is n∗
3, but 
ommits to

{b1, b2} against any other 
ontra
t.7. Independent Private ValuesAn environment that is of some interest in appli
ations is the independent private value en-vironment. The 
lassi
 �rst or se
ond pri
e au
tion models are typi
al examples. However, thetra
tability of su
h models makes them popular. For the independent private value environmentwe 
an use our theorem to provide something that looks like a folk theorem for Bayesian equilib-rium. For our purposes, this 'folk theorem' is interesting be
ause it suggests an environment where
ontra
ts 
an be used to fully de
entralize the me
hanism designer's problem.Players have private values if ui (a, (ti, t−i)) = ui

(
a,
(
ti, t

′
−i

)) for all a ∈ A, t−i, t′−i ∈ T−i(players' payo�s don't depend on other players' types). Types are independently distributed if
E (f (t−i) : ti) = E (f (t−i) : t′i) for every i, ti, t′i and every integrable fun
tion f .Theorem 2. Let s : T → A be an allo
ation rule that is implementable by a 
entralized me
hanismdesigner in an independent private value environment. Then the allo
ation s 
an be supported asa Bayesian equilibrium in 
ontra
table 
ontra
ts.Proof. An allo
ation rule is implementable by a me
hanism designer if there is a 
olle
tion ofpunishments si : T−i → A−i, where si

j is the punishment parti
ipants will impose on player i if he
hooses not to parti
ipate su
h that for ea
h ti and t′i

Et−i
(ui (s (t) , t) : ti) ≥

Et−i

(
ui

(
ai, s−i

(
t′i, t

′
−i

)
,
(
ti, t

′
−i

))
: ti
)
;and

Et−i
(ui (s (t) , t) : ti) ≥

max
ai∈Ai

Et−i

(
ui

((
ai, s

i (t−i)
)
, (ti, t−i)

)
: ti
)
.We prove the theorem by 
onstru
ting the various 
omponents required by Theorem 3.Begin with the punishment si (·). We have from the private value and independen
e assumption

max
ai∈Ai

Et−i

(
ui

((
ai, s

i (t−i)
)
, (ti, t−i)

)
: ti
)

=

max
ai∈Ai

Et−i

(
ui

((
ai, s

i (t−i)
)
, ti
))

.



30 MICHAEL PETERS AND BALÁZS SZENTESLet g̃i be the distribution on A−i indu
ed by the fun
tion si and the distribution of t−i and de�nethe punishment
s̃i (f, t−i) = g̃ifor ea
h t−i and every 
orresponden
e f : T−i → Ãi that is measurable with respe
t to fullinformation (a set whi
h 
ontains all 
orresponden
es whi
h are measurable with respe
t to anyinformation stru
ture). Then we have

Et−i
(ui (s (t) , t) : ti) ≥

max
ai∈Ai

Et−i

(
ui

((
ai, s̃

i (fai
, t−i)

)
, ti
))

=

max
ai∈Ai

E
(
ui

((
ai, g̃

i
)
, ti
))where fai

(t−i) = {ai} ∀t−i ∈ T−i. The important aspe
t of this punishment is that it does notdepend on t−i. Let τf
i be the full information partition of Ti with τ f =

∏
i τf

i . De�ne the
ommitment 
orresponden
e ri (t) = {si (t)} and the punishment 
orresponden
e pi
j (t) = Aj .These 
orresponden
es are both trivially measurable with respe
t to τ f . Furthermore, (5.1) holdstrivially sin
e the allo
ation must be in
entive 
ompatible, and ri is always a singleton. Now forany 
ommitment 
orresponden
e f measurable with respe
t to the full information partition τ f

−i,
Et−i

(
max

a∈fi(t−i)
Et′−i

(
ui

(
a, s̃i

(
fi, t

′
−i

)
, ti
)

: t′−i ∈ τ−i (t−i)
)

: ti

)
≤

(
max
a∈Ai

E
(
ui

((
a, g̃i

)
, ti
)))

≤

Et−i
(ui (s (t) , t) : ti) .So (5.2) is satis�ed. Then by Theorem 3, the allo
ation s is supportable as a 
ontra
t equilibrium.From the proof above, it should be apparent that what makes the theorem work is the fa
t thatthe punishment that the me
hanism designer uses to enfor
e parti
ipation has the same impa
t onthe non-parti
ipant no matter what he learns about the parti
ipants' types. This is a 
onsequen
eof the private value assumption. Some interdependent value problems will also have this property.For example, in a trading problem, not being able to trade may be worse for a player than tradingno matter what he learns about the types of the others. Similar folk theorems are possible in su
henvironments. 8. Con
lusionThis paper shows how the 
ontra
ts on 
ontra
ts approa
h 
an be extended to environmentswith in
omplete information by restri
ting players to use de�nable 
ontra
ts. De�nable 
ontra
ts
onstitute the largest 
lass of arithmeti
 
ontra
ts whi
h 
an be written as a �nite text in a �rstorder language. In this sense de�nable 
ontra
ts embed most other interesting 
lasses of feasible
ontra
ts as subsets.
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ontrast to the 
omplete information 
ase, we show that the 'folk theorem' doesn't generallyhold. A 
entralized me
hanism designer 
an implement allo
ations that 
an't be supported asequilibrium with 
ontra
tible 
ontra
ts. This limitation is not a 
onsequen
e of the set of feasible
ontra
ts, but rather of the fa
t that publi
 
ontra
ts reveal information about non-deviators'type. The restri
tion to de�nable 
ontra
ts allows us to provide a 
omplete 
hara
terization ofequilibrium and to prove this result. One of the results we provide as part of our main theoremillustrates the role that punishments play in a stati
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