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Abstract. We study an incomplete information game in which players can co-
ordinate their actions by contracting among themselves. We model this relation-
ship as a reciprocal contracting procedure where each player has the ability to make
commitments contingent on the other players’commitments. We differ from the
rest of the literature on reciprocal contracting by assuming that punishments can’t
be enforced in the event that cooperation breaks down. We fully characterize the
outcomes that can be supported as perfect Bayesian equilibrium outcomes in such
an environment. We use our characterization to show that the set of supportable
outcomes with reciprocal contracting is larger than the set of outcomes available in
a centralized mechanism design environment in which the mechanism designer is
constrained by his inability to enforce punishments against non-participants. The
difference stems from the players’ability in our contracting game to convey partial
information about their types at the time they offer contracts. We discuss the im-
plications of our analysis for modeling collusion between multiple agents interacting
with the same principal.
KEYWORDS: Conditional contracts; Default game; Signaling; Collusion.

1. Introduction

Consider a couple contemplating marriage. This couple regards marriage as a
mutual commitment which would constrain the choices each of them can make in life.
Before finalizing their decision to get married, they have to discuss many parameters
of their new life together including where they will get married, where they will
live, how they will finance their future, if they will have children, etc. There is a
possibility that they cannot agree on some of these parameters and therefore they
do not get married, at least for the time being. In this case, there is no commitment
made and the potential spouses have access to the same set of choices as they had
before they started talking about marriage. However, once the question of marriage
arises, it would be naïve to imagine that its alternative is the continuation of the
status quo for this couple. For instance, if one party held a less conciliatory position
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during the failed marriage deliberations, the other one may start questioning the
reliability of his/her partner. The statements made by these two people are not only
the potential building blocks of a marriage agreement between them but also the
means of signaling who they are to their partner. The information revealed by these
signals is relevant in shaping the outside option for the marriage as it is relevant in
devising the marriage.
In the language of this paper, the two partners above are the players of an incom-

plete information default game, and marriage is a contract that they can sign with the
purpose of constraining / coordinating their actions in this game. Other examples
captured by this setting include competing firms deliberating a cartel agreement,
bidders discussing the formation of an auction bidding ring, and disputing govern-
ments negotiating a peace settlement. Our objective is to find out what outcomes
the players can achieve in the default game with the help of contracts.
In what follows, we endow each player with the ability to communicate with other

players and to make commitments based on these communications. In particular,
we let each player write a reciprocal contract which conditions his default game
actions directly on the contracts of the other players. The exact nature of how this
conditioning works is explained in detail below. In a nutshell, if all the reciprocal
contracts agree with one another, then they implement some kind of a cooperative
action. If they do not agree, then the contracts are void and each player is free to
choose any action he wants in the default game.
Our paper is connected to the recent literature on contracts which can condition on

one another. This idea is given precise content by Tennenholtz (2004) who formalizes
a game played by computer programs, each of which conditions its action on some
other program. Kalai et al. (2010) uses the same idea to describe a two player
contracting game of complete information where the Nash equilibrium set coincides
with the set of joint mixtures over actions for which each player receives at least
his minmax payoff.1 Forges (2013) and Peters (2013) extend the characterization of
conditional contracting outcomes to incomplete information games under the solution
concepts of Bayesian equilibrium and perfect Bayesian equilibrium respectively. To
avoid infinite regress in the conditioning of the contracts, these papers restrict the
sets of contracts available to the players. Peters and Szentes (2012) follow a different
approach and consider a universal set of conditional contracts which can be written
in finite text.
What differentiates our paper from this earlier literature is that the players in

our reciprocal contracting game do not have enough commitment power to enforce
punishments on the players deviating from equilibrium behavior. Essentially players

1Bachi, Ghosh, and Neeman (2013) introduce the possibility of breaking the commitment made
in the conditional contract by incurring a deception cost.
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can bind their actions when all players unanimously agree to some course of action.
Otherwise, any kind of disagreement leads to a complete breakdown with every
player choosing his action in a sequentially rational way during the default game.
For instance, if a firm does not want to participate in a cartel agreement, we do
not allow some other firm to cut its price to zero just as a punishment for the non-
participating firm. Instead, we require that each firm chooses the default game action
that maximizes its expected payoff in case of a disagreement.2 The limitation on the
punishments introduces a new function for the conditional contracts which has been
absent in the earlier literature: in our setting, each player’s contract can be used as
a signaling device in order to manipulate the disagreement payoffs of the players.
Our main result is the characterization of all the outcome functions that can be

supported as (perfect Bayesian) equilibrium outcomes in our reciprocal contracting
game. An important subset of these outcomes is supported by equilibria which
do not involve any information revelation by the players during the negotiation of
the contract. We argue that these pooling equilibrium outcomes coincide with the
outcomes that can be sustained by a mechanism designer, who is constrained to offer
a contract that is acceptable to all players regardless of their private information and
who cannot influence the play in the default game when a player unexpectedly rejects
the contract.
We also show that the reciprocal contracting game has separating and partially

separating equilibria which support outcomes that this constrained mechanism de-
signer cannot. The ability to reveal partial information during the contracting pro-
cess changes the outside option of players in the default game, should they decide
not to cooperate. In a separating equilibrium, a player could still trigger the non-
cooperative play of the default game by not reciprocating with the other players. In
this case, the default game would be played under the updated beliefs on the types
of the non-deviating players because of the signaling that occurs through the con-
tract offers that these players make. As a consequence, the payoff that the deviating
player receives is the expectation of his non-cooperative payoff against the various
posterior beliefs he might face. This expectation could well be lower than what this
player would have received in the default game played under the prior beliefs.
Our paper also relates to mechanism design papers by Cramton and Palfrey (1995),

Caillaud and Jehiel (1998), Tan and Yilankaya (2007), Jullien, Pouyet, and Sand-
Zantman (2011). In these papers, the design problem is a centralized one where an
uninformed constrained designer offers a contract to the players. As in our paper,
a player can trigger the non-cooperative play of the default game by refusing this

2See also Koessler and Lambert-Mogiliansky (2011) for an example to a conditional commit-
ment (to transparency in order to fight corruption) technology which does not involve non-credible
punishments for the deviators.
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contract. A player’s acceptance decision is the only means of signaling his type to the
others before the contract takes effect. This strand of the literature studies equilibria
where all types of all players accept the designer’s offer. Therefore belief updates are
possible only off the equilibrium path, when a player refuses the designer’s contract
unexpectedly. By contrast, in our decentralized design setting, we need to account for
on the equilibrium path belief updates, which are supported by the type dependence
of the players’contracts.3 The information revealed at the contracting stage affects
players’ incentives on the equilibrium path as well as off of it. For this reason,
our characterization result will refer to incentive compatibility constraints which are
different than the standard interim constraints.
In earlier work (Celik and Peters, 2011), we show that equilibrium path signaling

can be sustained even in a constrained centralized design setting. This is possible if
players’acceptance decisions of the designer’s contract depend on their types.4 In
this earlier work, we demonstrate that the equilibrium path belief update opportunit-
ies enlarge the set of available outcomes. However, the additional outcomes achieved
through signaling require the contract to be rejected with a strictly positive prob-
ability. In the current setting, players can signal their type through their contract
offers —in a manner similar to Peters and Szentes (2011) —without having to reject
agreement with positive probability.5 This expands the set of supportable outcomes
beyond those described in Celik and Peters (2011).
The rest of the paper is organized as follows. In Sections 2 and 3, we introduce

the default game and the reciprocal contracting game. In Section 4, we describe
the incentive constraints and characterize the equilibrium outcomes of the reciprocal
contracting game by referring to these constraints. In Section 5, we discuss the im-
plications of our analysis for modeling collusion between multiple agents interacting
with the same principal. We show that, if the agents are colluding through reciprocal
contracts, the principal can implement outcomes which are deemed to be prone to
collusion by the earlier literature. In Section 6, we consider a private values environ-
ment under the single crossing and transferable payoffconditions. For this frequently
studied setting, we show that the incentive constraints in our characterization result
can be simplified further. Moreover the discrepancy between our results on collusion
and those of the earlier literature disappears. Section 7 is the conclusion. We relegate
the proof of the characterization theorem to the Appendix.

3See Maskin and Tirole (1990 and 1992) for another example to the signaling potential of con-
tracts offered by informed parties.

4In a similar vein, Philippon and Skreta (2012) and Tirole (2012) argue that a failing firm’s refusal
to participate in a government sponsored bailout plan may signal its confidence in the performance
of its assets.

5Unlike Peters and Szentes (2011), we allow action spaces to be continuous and fully incorporate
mixed strategies and stochastic contracts.
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2. The Default Game

In an environment with incomplete information, I is the set of players. We refer
to the private information of a player as his type. Each player i ∈ I has a finite
type set Ti. The actions available to player i in this game are elements of set Ai,
which is a closed subset of an Euclidean space with finite dimension. In standard
notation A and T are cross product spaces representing all players’actions and types
respectively. Notice that, by this construction, A is a subset of an Euclidean space
RK .6
In order to retain the idea that sensible off the equilibrium path beliefs about a

player can only change after that player himself has deviated, we assume from the
outset that types are independently distributed. Player i’s type is distributed with
respect to the prior distribution β0

i . We define β
0 =

{
β0
i

}
i∈I as the collection of

these priors. β0
i (ti) is the probability that player i has type ti ∈ Ti under the prior

distribution. Similarly, β0 (t) =
∏
i∈I
β0
i (ti) denotes the probability that the realization

of the type profile is t = {ti}i∈I ∈ T .
Preferences of player i are given by the payofffunction ui : A×T → R. Players have

expected utility preferences over lotteries. If q ∈ ∆A is a randomization over action
profiles and t ∈ T is a type profile, then ui (q, t) refers to the associated expected
utility with a slight abuse of notation. An outcome function is a mapping from
type profiles into randomizations over action profiles ω : T → ∆A.
In the absence of a technology to write down and commit to mechanisms, the set

of players, the action sets, the type sets, and the payoff functions define a Bayesian
game together with the prior distribution β0 =

{
β0
i

}
i∈I . The fact that players may

choose different actions under different beliefs is central to our analysis. Therefore
we study this game under an arbitrary distribution β = {βi}i∈I , rather than the
prior distribution. As in the definition of the prior distribution, βi is an element of
∆Ti and βi (ti) is the probability that player i has type ti under this distribution.
We refer to the collection I, {Ti}i∈I , {Ai}i∈I , {ui}i∈I , and β as the default game

under belief β. When playing this game, each type of each player chooses his action
to maximize his expected payoff. Accordingly, collection of functions {qi (·|β)}i∈I
constitutes a Bayesian equilibrium of the default game under belief β if each
action in the support of randomization qi (ti|β) is a solution to

max
ai∈Ai

Et−i|β−i [ui (ai, q−i (t−i|β) , ti, t−i)] ,

6If ki is the dimension of action set Ai for each player i, then K is smaller than or equal to∑
i∈I ki. Our construction allows for the possibility that Ai is finite for each i. In this case, A can

be considered as a finite subset of real line R.
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for each type ti ∈ Ti of each player i ∈ I. The operator Et−i|β−i stands for the
expectation over the values of t−i given belief β−i.

7

We restrict attention to default games for which a Bayesian equilibrium exists.
Existence of equilibrium is immediate for games with finite action sets. For simplicity
of exposition, we assume further that there is a unique Bayesian equilibrium of the
default game. We can extend the analysis to games with multiple equilibria with a
slightly more complicated statement of the incentive constraints below. Alternatively,
the unique equilibrium, to which we refer, can be thought as the equilibrium chosen
(among possibly multiple equilibria) by some selection criteria.8

Suppose that {qi (·|β)}i∈I is the Bayesian equilibrium of the default game under
belief β. We define the non-cooperative payoff Vi as the function that maps the
types of player i and the beliefs into expected equilibrium payoffs:

(2.1) Vi (ti, β) = Et−i|β−i [ui (qi (ti|β) , q−i (t−i|β) , ti, t−i)] .

2.1. Example: The Cournot Default Game. Consider a game played by two
quantity setting firms (players) who have the technology to produce the same homo-
genous good. Each player has a constant unit production cost which is his private
information. Unit cost (type) of player 1 is either 48 or 56. Unit cost of player 2
is either 52 or 80. These types are independently distributed for the players. The
inverse demand function for the good they produce is given as P = 80 − (y1 + y2),
where P is the price and y1, y2 are the production levels of players 1 and 2. Assum-
ing that each player is an expected profit maximizer, we can write player i’s utility
function as ui (yi, yj, ti) = [80− (yi + yj)− ti] yi. Since each player has a binary type
set, we can represent a probability distribution over the types of a player with a
single probability. Let βi denote the probability that player i has a lower cost type.
That is, β1 is the probability that player 1 has type (48) and β2 is the probabilit-
ies that player 2 has type (52). Under any pair of beliefs (β1, β2), this game has
a unique Bayesian equilibrium. The resulting equilibrium production and expected
payoff levels are reported below:

(2.2)

y1 (48|β1, β2) = 16−8β2+β1β2
1−0.25β2

V1 (48, β1, β2) =
(

16−8β2+β1β2
1−0.25β2

)2

y1 (56|β1, β2) = 12−7β2+β1β2
1−0.25β2

V1 (56, β1, β2) =
(

12−7β2+β1β2
1−0.25β2

)2

y2 (52|β1, β2) = 8−2β1
1−0.25β2

V2 (52, β1, β2) =
(

8−2β1
1−0.25β2

)2

y2 (80|β1, β2) = 0 V2 (80, β1, β2) = 0

7In standard notation, subscript −i refers to the collection of one variable for each player other
than player i. For instance, t−i = {tj}j∈I−{i}.

8A similar uniqueness assumption appears in the recent work of Hagenbach, Koessler, and Perez-
Richet (2012) with the same justification.
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Regardless of the beliefs, the high cost type of player 2 produces zero output, since
his production cost is higher than the price. For the other three types (types (48)
and (56) of player 1 and type (52) of player 2), the equilibrium behavior and the
expected payoff depend on the beliefs under which the game is played. Notice that
player i’s Bayesian equilibrium output and expected payoff are weakly decreasing in
his belief that his rival (player j) has the lower cost (βj), and weakly increasing in
player j’s belief that player i has the lower cost (βi).
We now introduce an extension of this game by allowing monetary transfers

between the players. We assume that in addition to setting his production level
yi, each player can also make a non-negative transfer zi to the other player. Players
maximize their utility net of the transfers.9 These monetary transfers will be useful
instruments for agreements between the players. However, in the absence of a bind-
ing mechanism, the equilibrium behavior for each player is making a zero transfer.
Therefore the equilibrium payoff functions we gave above are the non-cooperative
payoffs for the extended game as well. This game, which we call the Cournot de-
fault game, is a modified version of the example studied by Celik and Peters (2011).
In what follows, we will refer to the Cournot default game several times in order to
illustrate some key points of our analysis.

3. The Reciprocal Contracting Game

We model the contracting process as a slightly modified version of the reciprocal
contracting game introduced by Peters (2013). Reciprocal contracts are a convenient
way to model the kind of contracting situations we have in mind because, as shown
by Peters, their equilibrium outcomes can mimic the equilibrium outcomes of a broad
variety of different contracting games. This is important for problems like marriage,
cartel formation, or collusion where it is diffi cult to know exactly how contracts are
being negotiated. Reciprocal contracting provides a way to understand the entire
spectrum of behavior that is supportable with contracts. Unlike Peters, we assume
that the players cannot commit to a course of action unless the players unanimously
agree on it.
The contracting process takes place in two rounds. In the first round, players offer

contracts. These contracts determine a mechanism for each player, committing this
player to an action contingent on messages that will be sent in the second round.
The key feature of this process is the dependence of a player’s mechanism on the
mechanisms of the other players. This conditioning can either be explicit, as in
Peters and Szentes (2012), or implicit as in the contracting game we explain below.

9Player i’s utility net of the transfers is ũi (yi, yj , zi, zj , ti) = [80− (yi + yj)− ti] yi − zi + zj ,
where zi and zj are the monetary transfers made by firms i and j respectively.
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In line with the literature, we define a mechanism for a player as a mapping from
the cross product of the message sets into the actions that this player can take. The
contracting game relies on the class of direct mechanisms. A player’s message to a
direct mechanism consists of a type report ti and a correlating message ni which is aK
dimensional vector whose components are real numbers on the interval [0, 1]. Recall
that number K represents the dimension of the set of action profiles A. A direct
mechanism for player i transforms the type reports and the correlating messages of
the |I| players into a default game action that this player will take. Let N be the set
of |I| × K matrices consisting of real numbers on the interval [0, 1]. Then a direct
mechanism for player i is formally defined as:

mi : T ×N → Ai.

Notice that direct mechanisms are defined as deterministic mechanisms, i.e., each
message profile is mapped into a single action instead of a randomization over ac-
tions. When proving our characterization theorem, we will explain how the cor-
relating message vectors would generate a jointly controlled lottery, which supports
randomizations over actions. Moreover we will show that these randomizations may
be correlated across players as well.10 Mi denotes the set of all direct mechanisms
for player i.11

In the first round of the contracting game, each player offers a reciprocal con-
tract. A reciprocal contract gives a player the opportunity to make a revelation
about his type and the possibility of committing to a mechanism contingent on the
revelations made by the others. Recall that types of players are independently dis-
tributed. Before the first round of the contracting procedure, all the other players
believe that prior β0

i governs the distribution of player i’s type. After observing the
revelation made by player i, the prior belief on this player is updated to a posterior
belief. We need the set of possible revelations by each player to be large enough to
support any possible posterior distribution. To make it explicit that players signal
their types with their contract offers, we model each player’s revelation as announcing
a distribution of his types.12 Formally, a reciprocal contract for player i consists of a
revelation β̂i ∈ ∆Ti and a list of potential direct mechanisms δ which is represented

10In other words, we use the correlating message vectors as a proxy for a public randomization
device. For settings in which a public randomization device exists, we could define a direct mechan-
ism for player i as a mapping from the type reports and the realizations of the commonly observed
random variable into the actions of player i.

11In what follows, we assume that the players use these direct mechanisms as the building blocks
of their contracts. Our analysis extends to the case where the mechanisms available to each player
constitute a superset of the direct mechanisms.

12Our analysis extends to the case where the revelations available to each player constitute a
superset of the set of distributions of his types.
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by a mapping from revelations of all players into profiles of direct mechanisms

δ : ×j∈I∆Tj → ×j∈IMj.

These contracts determine the players’mechanisms as follows: if all contracts
include the same list δ, then the mechanisms are indeed pinned down by how this
function maps the submitted revelations of players into a profile of mechanisms.
That is, if the players’offers in the first round agree on function δ, than the direct
mechanism δi

(
β̂
)
determines the mechanism that player i will follow in the second

round, where δi is the ith component of function δ and β̂ =
{
β̂i

}
i∈I

is the profile

of revelations made in the first round. However, if there is at least one player who
offered a contract containing a different list δ than did the other players, then no
mechanism takes effect. Instead, each player i chooses his default game action non-
cooperatively. Reciprocal contracts are intended to look like mutual agreements —if
all players agree, cooperation occurs. Otherwise, when a player does not reciprocate,
as a “punishment”to this player, the default game is played non-cooperatively.
A contract offer, by construction, leads to a specific commitment for a player. Yet

this offer does not necessarily resolve all of the player’s uncertainty. He does not
know what he himself has committed to until he sees all of the other contracts. If he
expects the other players to offer contracts that list the same array of mechanisms
δ that he does, then he believes that the first round revelations of all players will
determine his commitment as well as the commitments of the others.
The reciprocal contracting process induces an imperfect information game with

two stages. We base our analysis of this sequential game on the solution concept of
perfect Bayesian equilibrium, which consists of strategies and beliefs satisfying the
conditions below:
i) In round 1, each type of each player i chooses his contract to maximize his

expected continuation payoff.
ii) After observing player i’s contract offer, other players update their beliefs on

his type. On the equilibrium path, the belief updates are governed by the Bayes rule.
Off the equilibrium path, all players other than player i share a common posterior
on player i’s type.13

iii) In round 2, on the equilibrium path or on the continuation games reachable by
unilateral deviations from the equilibrium play,14 each type of each player i chooses

13In other words, after observing player i’s off the equilibrium path behavior, all the other players
update their beliefs in the same way. This assumption is consistent with Fudenberg and Tirole’s
(1991) definition of perfect Bayesian equilibrium.

14Our definition of perfect Bayesian equilibrium demands sequential rationality of strategies
only for continuation games which are either on the equilibrium path or accessible by unilateral
deviations from the equilibrium behavior. As Peters and Troncoso Valverde (2011) demonstrate,
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his message to the mechanisms (if all contract offers include the same list of direct
mechanisms) or his default game action (if some player offers a different list) in order
to maximize his expected continuation payoff, given the updated beliefs.

4. Incentive Constraints

The main objective in this paper is providing a characterization of the outcome
functions which are supportable as the perfect Bayesian equilibrium outcomes of the
reciprocal contracting game. With our first result, we show that it is suffi cient to
restrict attention to a specific class of equilibria for this characterization.

Proposition 1. If ω is a perfect Bayesian equilibrium outcome function of the recip-
rocal contracting game then it is also supportable as the outcome of a perfect Bayesian
equilibrium of this game where
i) players reciprocate: all types of all players submit a unique list of mechanisms
δ∗ as part of their contracts in round 1;
ii) revelations are accurate: on the equilibrium path, after observing revelation
β̂i ∈ ∆Ti by player i, all the other players update their posterior belief to β̂i;
iii) type reports are truthful: on the equilibrium path, all players report their
types truthfully to the mechanisms in round 2;
iv) correlating message vectors are uniformly distributed: on the equilibrium
path, for each player, each component of the correlating message vector is uniformly
distributed on the interval [0, 1] regardless of the player’s type and the posterior be-
liefs.

We provide the proof of this proposition in the Appendix together with the proof
of our characterization theorem.
Property (i) above follows from a familiar argument. Suppose there exists an

equilibrium where some types of some players do not reciprocate, i.e., they submit
a list of mechanisms other than δ∗. The very same equilibrium outcome could have
been supported by an alternative equilibrium where all types of all players agree on
an “extended”list of mechanisms. This extended list replicates the non-cooperative
play of the default game following the non-reciprocating behavior in the original
equilibrium. Property (iii) is a direct implication of the revelation principle. Property
(iv) points to the fact that correlating messages are used in order to generate jointly
controlled lotteries (to be used as public randomization devices) in this class of
equilibria.

optimality of strategies in all nodes of the extensive form game is not possible to achieve: there
may be continuation games triggered by players agreeing on direct mechanisms which do not have
an equilibrium in pure or mixed strategies.
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The intuition for property (ii) follows from the revelation principle as well. If all
types of all players submit the same list of mechanisms δ∗, their revelation messages
are the only means of separating different types of players on the equilibrium path.
Each revelation by player i will lead to a potentially different posterior on his types.
In the class of equilibria defined by the proposition above, the equilibrium path
revelations are re-labeled in such a way that they match the posterior beliefs they
generate.
In an equilibrium which satisfies the properties above, a player can deviate from

equilibrium play either by refusing to reciprocate with the other players, or by making
an inaccurate revelation about his type in round 1, or by misreporting his type in
round 2. The outcome functions must satisfy certain incentive constraints for these
deviations not to be profitable. We describe these constraints below and discuss how
they relate to the more familiar versions invoked in the earlier literature. Then we
provide a formal characterization of equilibrium outcome functions by referring to
the described constraints.

4.1. Individual Rationality. In an equilibrium where all players are expected to
reciprocate, any player can trigger the non-cooperative play of the default game by
offering a different list of mechanisms. As a result of this unilateral deviation, each
player i receives the non-cooperative payoff Vi

(
ti, βi, β−i

)
defined in (2.1). For this

deviation not to be profitable, each type of each player must expect an equilibrium
payoff weakly higher than his non-cooperative payoff. This consideration yields the
individual rationality constraints.
After a player’s refusal to reciprocate, the beliefs on the players’types need not

remain the same as the prior beliefs. First of all, as a result of the refusal of player i,
the other players may update their belief regarding the type of this player from prior
β0
i to some posterior β

no
i . We refer to the collection of these beliefs β

no = {βnoi }i∈I
as the refusal beliefs. In the construction of an equilibrium where all players
reciprocate, refusal beliefs are arbitrary. This is due to the fact that standard solution
concepts such as perfect Bayesian equilibrium do not put much restriction on beliefs
off the equilibrium path.15

In addition to changing their beliefs on the type of a deviating player, the par-
ticipants of the reciprocal contracting game may update their beliefs on the non-
deviating players as well. Recall that players are allowed to make revelations about

15It is possible to suggest a refinement of perfect Bayesian equilibrium by imposing additional
requirements on these refusal beliefs. For instance, setting βnoi = β0

i for all i amounts to assuming
passive beliefs (Cramton and Palfrey, 1990). Alternatively, one may assume that the support of
refusal beliefs consists only of the types that are not strictly worse off by rejecting to reciprocate.
This refinement leads to the concept of ratifiability (Cramton and Palfrey, 1995). We will continue
our analysis without imposing such a refinement and allowing for arbitrary rejection beliefs.
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their private information as part of their contract offers. As a result, their equilibrium
play may indeed unveil information on their types. Any player who contemplates
deviating should understand the impact that other players’revelations will have.
Consider type ti of player i’s decision to reciprocate with the others in the first

round of the game. This player knows that the others will update their beliefs to βnoi
if he does not reciprocate. He also comprehends that after observing the contract
offers, the beliefs on the other players’types will be updated to some posterior β−i.
Recall that the non-cooperative payoff Vi

(
ti, β

no
i , β−i

)
yields the continuation payoff

of player i from the non-cooperative play of the default game under these beliefs.
There is one more complication in the analysis of player i’s decision to reciprocate.
Player i has to make this decision before he learns the other contracts and observes
the revelations by the other players. Therefore, at the time he makes the decision,
player i does not know the exact realization of the posterior β−i. However, the
equilibrium strategies of the other players reveal the distribution over the possible
posteriors.
We represent a distribution over the posteriors on the types of player i with nota-

tion Πi ∈ ∆ (∆Ti). Suppose this distribution is indeed generated by revelations made
by player i on the equilibrium path. In this case, the Bayes rule implies that the ex-
pectation over the posteriors equals the prior distribution: Eβi|Πi

βi = β0
i . Following

Kamenica and Gentzkow (2011), we call distribution Πi Bayes plausible when it
satisfies this property. If Πi is Bayes plausible for each player i, then we refer to the
collection Π = {Πi}i∈I as a posterior system.
Suppose the outcome function ω is supportable by an equilibrium where all players

reciprocate with each other by submitting the same list of mechanisms. Then each
player must have the incentive not to deviate by refusing to reciprocate. This is
ensured with the following individual rationality condition. Under the refusal beliefs
βno and the posterior system Π, outcome function ω is individually rational if

(4.1) Et−i|β0−i {ui (ω (t) , t)} ≥ Eβ−i|Π−i
{
Vi
(
ti, β

no
i , β−i

)}
for all ti and all i.
Consider an equilibrium of the contracting game, where no relevant information is

revealed with the equilibrium contract offers. We can represent the resulting inform-
ation structure with a posterior system Π which puts unit mass on the prior distribu-
tion β0. Under this system, the right hand side of (4.1) boils down to Vi

(
ti, β

no
i , β

0
−i
)
:

(4.2) Et−i|β0−i {ui (ω (t) , t)} ≥ Vi
(
ti, β

no
i , β

0
−i
)

for all ti and all i.
For player i, payoff Vi

(
ti, β

no
i , β

0
−i
)
corresponds to the non-cooperative play of the

default game under no additional information other than the prior beliefs. Other
posterior systems would have given player i more information on the types of the
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other players. Nevertheless, Vi
(
ti, β

no
i , β

0
−i
)
does not necessarily constitute a lower

bound on the right hand side of (4.1). In other words, the reservation utility of player
i may decrease with the level of information revealed by the contracts offered in the
first round. We will demonstrate this point with the help of the Cournot default
game introduced earlier.

4.1.1. Individual Rationality and the Cournot Default Game. Suppose that
the two players of the Cournot default game are negotiating over a cartel agreement
by using the reciprocal contracting process we described. If these players can agree
on the cartel, their agreement will determine their type dependent production levels
and the monetary transfers they will make to each other. Each player has the option
to refuse to participate in the cartel. By doing so, the player triggers the non-
cooperative play of the Cournot default game. Before they start the negotiations,
each player’s belief on the type of the other player is uniform. That is, the prior
beliefs are given as β0

1 = β0
2 = 0.5.

What payoff would a player expect from not participating in the cartel? The
non-cooperative payoff functions we report in (2.2) indicate that Player 2 with cost
(80) would receive zero payoff from the default game regardless of the beliefs. The
non-cooperative payoffs of the other types of players decrease in the likelihood that
they are perceived to have a higher cost. This means that a larger set of outcome
functions will be classified as individually rational if a non-participating player is
believed to be the highest cost type with probability one. This is ensured by the
following refusal beliefs: βno1 = βno2 = 0.
What about the beliefs on the type of the non-deviating player? Since these beliefs

are equilibrium path beliefs, they should be equal to the prior belief in expectation.
That is, if Πi is the distribution over the equilibrium beliefs on the types of player
i, then Eβi|Πi

βi = β0
i = 0.5. As long as it satisfies this Bayes plausibility condition,

any Πi is supportable as a distribution over the equilibrium beliefs.
Let us start with considering the non-cooperative payoff function of player 2 with

cost (52). This type’s non-cooperative payoff V2 (52, β1, β2) is convex in β1, implying
that his expected default game payoff would increase in the information he receives
on player 1’s type. Therefore the right hand side of (4.1) would be minimized if
the distribution of posteriors assigns unit mass to the prior distribution β0

1 = 0.5.
We label this degenerate distribution of posteriors as Π∗1. Under the refusal belief
βno2 = 0 and the prior belief β0

1 = 0.5, the non-cooperative payoff for type (52) of
player 2 is V2 (52, 0.5, 0) = 72 = 49. Player 2 with type (52) will not accept the cartel
agreement if he receives a payoff lower than this figure.
Now we turn our attention to player 1. This player’s non-cooperative payoff is not

convex in β2 for either one of his two types. This non-convexity indicates that this
player’s expected payoff can be reduced by revealing information to him on player 2’s
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type. To see this, first suppose that the distribution over the posteriors of types of
player 2 assigns unit mass to the prior. Under the refusal belief βno1 = 0 and the prior
belief β0

2 = 0.5, the non-cooperative payoff of player 1 is V1 (48, 0, 0.5) =
(

16−4
1−0.125

)2 ∼=
188. 08 for type (48) and V1 (56, 0, 0.5) =

(
12−3.5
1−0.125

)2 ∼= 94. 37 for type (56). If player
1 believes that he will not receive any additional information about his rival, these
numbers determine his type dependent reservation utility.
As mentioned above, thanks to the non-convexity of function V1, one could re-

duce this reservation utility by revealing player 1 some information about the type
of player 2. For instance, consider the distribution of posteriors Π∗2 which assigns
probability 3/8 to posterior β2 = 0 and probability 5/8 to posterior β2 = 0.8. No-
tice that Π∗2 is Bayes plausible since Eβ2|Π∗2β2 = 0.5. In order to support Π∗2 as the
distribution of posteriors in the reciprocal contraction game, it would suffi ce to con-
struct an equilibrium where type (52) of player 2 makes the revelation β̂2 = 0.8 with
probability one and type (80) of player 2 randomizes between β̂2 = 0.8 and β̂2 = 0
with probabilities 1/4 and 3/4 respectively. Under Π∗2, the expected value of the
non-cooperative payoff for the two types of player 1 are as below:

Eβ2|Π∗2V1 (48, 0, β2) =
3

8
V1 (48, 0, 0) +

5

8
V1 (48, 0, 0.8) =

3

8
256 +

5

8
144 = 186,

Eβ2|Π∗2V1 (56, 0, β2) =
3

8
V1 (56, 0, 0) +

5

8
V1 (56, 0, 0.8) =

3

8
144 +

5

8
64 = 94.

Notice that both numbers are lower than the non-cooperative payoffs corresponding
to the alternative scenario where the default Cournot game is played under the prior
belief β0

2 = 0.5. Figure 1 illustrates this for type (56) of player 1.16 In fact, it follows
the analysis in Celik and Peters (2011) that any distribution other than Π∗2 would
result in a strictly higher expected non-cooperative payoff for at least one of the
types of player 1.17

So far, we defined two distributions over the posteriors on the types of player
1 (Π∗1) and player 2 (Π∗2). These two constitute a posterior system Π∗ = {Π∗1,Π∗2}.
Under the posterior system Π∗ and refusal beliefs βnoi = 0, player 1 expects to receive
payoff 186 for type (48) and payoff 94 for type (56) from the non-cooperative play of
the Cournot default game. Similarly, player 2’s non-cooperative payoff is 49 for type
(52) and 0 for type (80). These figures pin down the reservation utility levels on the
right hand sides of constraints in (4.1).

16For ease of demonstration, figure is not drawn to scale.
17Distribution Π∗2 minimizes the expected value of the non-cooperative payoff of type (56) of

player 1, since Eβ2|Π∗
2
V1 (56, 0, β2) = 94 is the value of the biconjugate of function V1 (56, 0, β2)

at β2 = 0.5. Any other distribution of posteriors would support a strictly higher non-cooperative
payoff than 94 for type (56).
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Figure 1. Non-convexity of the non-cooperative payoff function

The interesting point about the above construction is the decline in player 1’s
expected non-cooperative payoff as he gets superior information on the type of the
other player through the latter’s revelations. What is the reason for this seemingly
negative value for information? The answer lies in the observation that, in this set-
ting, it is not possible to single out one player and give him additional information
without changing what the other player knows. As player 1 learns something from
player 2’s contract offer, player 2 also learns that player 1 is better informed. As a
result of all this supplementary information, not only player 1 but also player 2 may
choose a different default game behavior than what would have been chosen under
their prior beliefs. In the Cournot game, the change in the continuation behavior of
player 2 is detrimental to player 1’s payoff, even as he enjoys a higher accuracy of
information. The equilibrium play of the default game under the updated inform-
ation lowers player 1’s payoff relative to what it would have been in the Bayesian
equilibrium of the default game when every player is guided by his interim belief.
The fact that the right hand side of the individual rationality constraint in (4.1)
can decrease in the information revealed to player i is the key to understanding how
partial information revelations enlarge the set of feasible outcome functions.18

18What is critical in this explanation is that the non-deviating player’s behavior in the default
game has to change depending on the information that the deviator has. In essence the equilibrium
we construct punishes the deviating player by force-feeding him the information. If there were a
way to commit the non-deviating player to a punishment strategy, there would be no need for these
equilibrium path belief updates. A similar punishment could have been sustained if we did not
impose a sequential rationality condition after a deviation (if we were to look for all the Bayesian
equilibria rather than the perfect Bayesian equilibria of the reciprocal contracting game) as well.
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4.2. Incentive Compatibility. As we argued above, the extent of the information
that the players reveal with their contracts affects their continuation payoffs from
a refusal to reciprocate. The potential to signal private information has an impact
on how players act when they all decide to reciprocate as well. This impact can be
described by the following two requirements. First, an equilibrium outcome must
ensure that each player would make an accurate revelation with his contract offer in
the first round. Then, once these contracts determine the mechanisms, the same out-
come must give each player the incentive to reveal his true type even after observing
the information leaked by the contracts in the first round.
Suppose that posterior system Π represents the equilibrium distribution of the

posterior beliefs on the players’types. Each posterior in the support of Π is associ-
ated with a different subgame of the reciprocal contracting game, starting with the
corresponding revelation in the first round. How the players’types will be mapped
into their actions may vary across these subgames. Let ωβ be the outcome function
which determines this mapping for the subgame played under posterior β.19 We
refer to the collection

{
ωβ
}
β∈supp(Π)

as a family of outcome functions, where
supp (Π) ⊂ ×i∆Ti is the support of Π.
Once we have an outcome function for each posterior possible to reach on the

equilibrium path, we can construct the outcome function associated with the over-
all game by taking the expectation over these posteriors. We say that the family
of outcome functions

{
ωβ
}
β∈supp(Π)

is consistent with the outcome function ω if
ω (t) = Eβ|Π,tωβ (t) for all type profiles t.20 One trivial way to construct a family of
outcome functions consistent with ω is setting ωβ = ω for all β ∈ supp (Π). However,
as long as ω is not a deterministic outcome function and supp (Π) is not singleton,
one can construct other families of outcome functions consistent with ω.
In the Cournot example above, posterior system Π∗ is composed of two posteriors

(β1 = 0.5, β2 = 0) and (β1 = 0.5, β2 = 0.8), which are realized with probabilities 3/8
and 5/8 respectively. Therefore, under Π∗, a family of outcome functions consists of
two functions, one for each of the two posteriors. Such a family of outcome functions
is consistent with the outcome function which is constructed by taking its expectation
over these two posteriors.
As mentioned above, in the first round of the reciprocal contracting game, each

type of each player must have the incentive to reveal the accurate information about

19Notice that, given posterior β, outcome function ωβ maps each type profile into a randomization
over actions, even when the type profile is not in the support of the posterior. That is, ωβ (t) is
well defined even when β (t) = 0.

20For instance, if the support of the posterior system Π is finite, Eβ|Π,tωβ (t) equals∑
β∈supp(Π) Pr (β|Π, t)ωβ (t), where Pr (β|Π, t) = β(t)Π(β)

β0(t)
is the conditional probability of observing

posterior β given posterior system Π and type profile t.
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his type. Since players decide on their revelations before they observe the revelations
of the others, we refer to the conditions arising from this consideration as the pre-
revelation incentive compatibility constraints. Under the posterior systemΠ, a family
of outcome functions

{
ωβ
}
β∈supp(Π)

is pre-revelation incentive compatible if

(4.3) Eβ−i|Π−iEt−i|β−i
{
ui
(
ωβi,β−i (t) , t

)}
≥ Eβ−i|Π−iEt−i|β−i

{
ui

(
ωβ
′
i,β−i (t) , t

)}
for all βi, β

′
i ∈ supp(Πi) such that βi (ti) > 0, and for all types ti of all players i.

Observe that pre-revelation incentive compatibility is satisfied trivially when Π
does not involve any information revelation (assigns unit mass on a single distribu-
tion). Consider the Cournot example we developed above. Since Π∗1 is a degenerate
distribution, the pre-revelation incentive compatibility requirement in (4.3) holds
trivially for player 1. However, condition (4.3) can be rather stringent for more gen-
eral distributions over posteriors. For instance, in our Cournot example, the support
of Π∗2 consists of two posteriors and both these posteriors assign a non-zero probab-
ility to type (80) of player 2. Therefore any family of outcome functions satisfying
the pre-revelation incentive compatibility condition must make this type indifferent
between the two equilibrium path revelations he would make.
After the players offer their contracts (including the list of mechanisms δ and

revelations on their types) in the first round, they have to submit their reports to the
mechanisms resulting from the interaction of these contracts. In this second round
of the game, the players hold additional information regarding their rivals’ types,
since they have already observed all the contracts. An equilibrium outcome function
should give each type of each player the incentive not to imitate some other type,
even under the updated equilibrium path beliefs. We capture this idea with the post-
revelation incentive compatibility constraints. Under the posterior systemΠ, a family
of outcome functions

{
ωβ
}
β∈supp(Π)

is post-revelation incentive compatible if for
all β ∈ supp (Π),

(4.4) Et−i|β−i
{
ui
(
ωβ (ti, t−i) , ti, t−i

)}
≥ Et−i|β−i

{
ui
(
ωβ (t′i, t−i) , ti, t−i

)}
for each type pair ti, t′i of each player i.
We are now ready to suggest a definition for incentive compatibility of an out-

come function. As in the case of individual rationality, this definition will refer to a
specified posterior system. An outcome function ω is incentive compatible under
the posterior system Π if there exists a family of outcome functions

{
ωβ
}
β∈supp(Π)

,
which is consistent with ω and which is pre-revelation and post-revelation incentive
compatible under Π.
Post-revelation incentive compatibility means that each player finds it optimal to

report his type truthfully whatever information the other players reveal with their
contracts. An implication of this property is that committing to truthful reporting
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is optimal even before observing these revelations. To see this, notice that post-
revelation incentive compatibility requires inequality (4.4) to hold for all revelations
β in the support of the posterior system Π. After taking the expectation of both sides
of this inequality over β, we end up with the following standard interim incentive
compatibility condition

(4.5) Et−i|β0−i {ui (ω (ti, t−i) , ti, t−i)} ≥ Et−i|β0−i {ui (ω (t′i, t−i) , ti, t−i)}

for each type pair ti, t′i of each player i. Accordingly, if ω is incentive compatible,
it is also interim incentive compatible. However, incentive compatibility is generally
a more demanding condition than (4.5) since it requires truthful reporting to be
optimal not only at the interim stage (under the prior β0

−i), but also at the post-
revelation stage (under all equilibrium path posteriors β−i in the support of Π−i).

4.2.1. Incentive Compatibility and the Cournot Default Game. We turn to
the Cournot example one more time to demonstrate the procedure to examine in-
centive compatibility of an outcome function. We start with considering the outcome
function which chooses the output levels that would maximize the industry profits,
i.e., the sum of the payoffs of the two players of the Cournot game. Since the unit
production costs are constant, this maximization requires that, given any type pro-
file, the player with the higher unit cost produces zero output and the other player
produces his monopoly output. The resulting production levels are as in the table
below:

(4.6)
t2 = 52 t2 = 80

t1 = 48 y∗1 = 16, y∗2 = 0 y∗1 = 16, y∗2 = 0
t1 = 56 y∗1 = 0, y∗2 = 14 y∗1 = 12, y∗2 = 0

In addition to deciding on their production levels, the players of the Cournot default
game are allowed to make monetary transfers to each other as well. Therefore, in
order to fully define an outcome function, we should also specify the type dependent
transfers of the players. Now recall the reservation utilities we derived for these
players in Section 4.1.1. Under refusal beliefs βnoi = 0 and posterior system Π∗ =
{Π∗1,Π∗2}, the expected non-cooperative payoff of player 1 was 186 for type (48) and
94 for type (56). Suppose that the monetary transfers are determined in such a way
that player 1 receives a payoff exactly equal to his reservation utility, regardless of
the type of player 2. Below are the net transfers ∆z∗ = z1 − z2, which ensure these
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payoffs together with the production levels in (4.6):21

(4.7)
t2 = 52 t2 = 80

t1 = 48 ∆z∗=70 ∆z∗=70
t1 = 56 ∆z∗ = −94 ∆z∗ = 50

We label the outcome function described in (4.6) and (4.7) as ω∗. By construction,
ω∗ satisfies the individual rationality constraints of player 1 under βnoi = 0 and Π∗.
Player 2’s individual rationality constraints hold as well since his expected payoff
under ω∗ is 1

2
70 + 1

2
50 = 60 ≥ 0 for type (80) and 1

2
70 + 1

2
102 = 86 ≥ 49 for type

(52).22 Hence, outcome function ω∗ is individually rational under βnoi = 0 and Π∗.
Observe that ω∗ is interim incentive compatible as well, since it satisfies (4.5) for
both players.23

However, ω∗ does not satisfy the incentive compatibility condition we developed
above. To see this, suppose that player 1 updates his belief to posterior β2 = 0 after
the first round of the reciprocal contracting game. This happens if player 2 reveals his
unit cost as high (80) in the first round. In this case, any family of outcome functions
which is consistent with ω∗ would instruct player 2 to produce zero output regardless
of the type of player 1. The reported type of player 1 determines his production level
as well as the monetary transfer he will make to player 2. Consider the reporting
decision of type (48) of player 1 in round 2. If this type of the player reports his
type truthfully, he would produce y∗1 = 16, make the net transfer ∆z∗ = 70, and
therefore receive the payoff 186, which is prescribed by the outcome function ω∗.

21The monopoly profit is 162 = 256 under cost (48) and 122 = 144 under cost (56). Therefore
the net transfers reported here set the type dependent payoff of player 1 at the targeted reservation
payoff. Notice that we only report the net transfers ∆z∗ since the values of z1 and z2 are redundant.
22The monopoly profit is 142 = 196 under cost (52). This yields the payoff 196 − 94 = 102 net

of the transfer when player 2 type (52) faces player 1 type (56).
23Recall that either player has only two possible types. Interim incentive compatibility demands

the difference between the expected payoffs of these two types not to be too large or too small.
Otherwise one of the types would find it profitable to imitate the other one. More specifically, in
our linear environment, constraint (4.5) asks for the expected payoff difference to be in-between
“the difference between the unit costs of the two types”multiplied by “the expected production
level of each type.”For player 1, this condition can be written as

(56− 48)Et2y∗1 (48, t2) ≥ 186− 94 ≥ (56− 48)Et2y∗1 (56, t2)

(8) 16 ≥ 92 ≥ (8)
1

2
12

given outcome function ω∗. The corresponding condition for player 2 is

(80− 52)Et1y∗2 (t1, 52) ≥ 86− 60 ≥ (80− 52)Et1y∗2 (t1, 80)

(28)
1

2
14 ≥ 26 ≥ (28) 0.

Since these conditions are satisfied, ω∗ is interim incentive compatible.
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By contrast, if the same type imitates type (56), then he would produce a lower
amount y∗1 = 12, make a lower net transfer ∆z∗ = 50, and end up with payoff
(80− 12− 48) 12− 50 = 190, which is higher than the truthful reporting payoff 186.
This example demonstrates that incentive compatibility in the reciprocal contracting
environment is generally stronger than interim incentive compatibility.
In conclusion, the monopoly output levels in (4.6) are not incentive compatible

together with the monetary transfers in (4.7). The resulting outcome function ω∗ is
interim incentive compatible, yet it is not incentive compatible under the posterior
system Π∗, which is the only posterior system that makes this outcome individually
rational. Later in Section 6, we will demonstrate the existence of a more elaborate
transfer scheme which makes the monopoly output levels incentive compatible and
which yields the same type dependent payoffs as in outcome ω∗. The monetary
transfers of Section 6 will depend not only on the type reports submitted in round 2
of the contracting game, but also on the revelations made in round 1.

4.3. The Characterization Theorem. The main theorem can now be stated.

Theorem 1. ω is a perfect Bayesian equilibrium outcome function of the reciprocal
contracting game if and only if there exist refusal beliefs βno and a posterior system
Π under which ω is individually rational and incentive compatible.

We prove Theorem 1 together with Proposition 1 in the Appendix. The proof
consists of two parts. In the first part, we show that any perfect Bayesian equilibrium
outcome function is individually rational and incentive compatible under some refusal
beliefs βno and some posterior system Π. This step proves the only if direction of
the theorem. For the second part, we start with an outcome function ω which is
individually rational and incentive compatible under some βno and Π. We construct
an equilibrium which supports the outcome function ω and which satisfies conditions
(i) to (iv) of Proposition 1, proving the proposition and the if direction of the
theorem.
Our characterization result suggests the following procedure to investigate whether

an outcome function ω is supportable with a perfect Bayesian equilibrium of the
reciprocal contracting game. First, find the refusal beliefs and posterior systems
under which ω is individually rational. Then, examine if, for any of these posterior
systems, one can construct a family of outcome functions which is consistent with
ω and which satisfies the pre-revelation and post-revelation incentive compatibility
conditions.
Under the degenerate posterior system which assigns unit mass on the prior β0,

our individual rationality and post-revelation incentive compatibility constraints boil
down to the standard individual rationality (4.2) and interim incentive compatibil-
ity (4.5) conditions. Moreover pre-revelation incentive compatibility constraint is
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trivially satisfied since there is only one posterior in the support of the degenerate
posterior system. This observation identifies an important subset of the equilibrium
outcomes.

Corollary 1. If outcome function ω satisfies conditions (4.2) and (4.5), it is a perfect
Bayesian equilibrium outcome function of the reciprocal contracting game.

Each of the outcomes identified in this corollary can be supported by an equilibrium
where no information is revealed with the contract offers. This class of outcome
functions also corresponds to the set of outcomes which are available through a
more centralized scheme than our reciprocal contracting process. Consider a central
designer who is uninformed on the types of the players and who can offer them a
centralized contract. In case that this contract is accepted by all players, it regulates
how they will play the default game. But if it is rejected by at least one of the players,
the contract is null and void and the default game is played non-cooperatively. In
this latter case, the designer does not have any capacity to influence the play of the
default game. Conditions (4.2) and (4.5) also characterize the outcomes that this
designer can implement by offering contracts which will be unanimously accepted by
all types of all players.24

Many earlier studies of default games and contracts are based on the premise that
the outcomes satisfying (4.2) and (4.5) are the only outcomes to be expected when
players get together to negotiate how to play a game. As we have seen in Section 4.1
however, there are outcome functions which violate condition (4.2) and yet which
are still classified as individually rational since they satisfy condition (4.1) under
some non-degenerate posterior system. These outcome functions can be supported
as equilibrium outcome functions of the reciprocal contracting game as long as they
satisfy the incentive compatibility conditions in (4.3) and (4.4), which are generally
stronger than the interim incentive compatibility constraint in (4.5).
Let us summarize our discussion on individual rationality and incentive compat-

ibility. Due to the possibility of information revelation during the negotiation of
contracts, some outcome functions qualify as individually rational even though they
yield a payoff lower than what a player would expect from the play of the default
game under his prior beliefs. Supporting information revelations at the contracting

24It is important not to confuse the constrained mechanism design approach here with an un-
constrained design approach where the designer can enforce an arbitrary punishment on a non-
participating player by forcing the participating players to take punitive actions they may not
necessarily like and by using their private information to increase the impact of this punishment
(Jehiel, Moldovanu, and Stacchetti, 1996 and 1999). Peters (2013) shows that the set of implement-
able outcomes by such an unconstrained mechanism designer is the same as the set of equilibrium
outcomes when reciprocal contracts include punishment clauses.
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stage, however, comes at the cost of more stringent incentive compatibility require-
ments than the standard interim conditions.
Accommodating information revelations on the equilibrium path complicates the

definitions of the individual rationality and incentive compatibility requirements.
Stating these conditions in our setting necessitates referring to posterior systems and
families of outcome functions, which do not appear in the standard interim versions
in (4.2) and (4.5). However, this does not mean that we could have obtained simpler
characterization conditions if we limited the information revelation capacities of the
players, say by removing the possibility of sending revelation messages as part of their
reciprocal contracts. As long as a player has the ability to influence the resulting
mechanism, he can use his decision as a credible signal of his private information.
For example, Celik and Peters (2011) show that even a simple yes or no decision
on a central designer’s contract can reveal the type of the responding player and
therefore extend the set of feasible outcome functions beyond what is outlined by
the standard conditions. Accordingly, for conditions (4.2) and (4.5) to characterize
all the outcomes available to negotiating parties, we need not only a central designer,
but also an ad hoc directive which instructs this designer to offer only the contracts
which would be acceptable by all types of all players.

5. Implications for Collusion and Mechanism Design

Elimination of non-credible punishments expands the economic applications that
can benefit from the reciprocal contracting methodology. For instance, our analysis
has important implications on identifying the collusion potential between multiple
agents responding to a grand contract designed by a principal. If these agents can-
not agree on the collusion scheme to follow, they would be released from any of the
commitments they deliberated on and would respond to the grand contract non-
cooperatively. The standard approach in the collusion literature is to assume that
collusion is mediated by a third party, such as the above mentioned central mechan-
ism designer.25 This mediator aims to maximize the sum of the (ex-ante) payoffs of
the colluding agents.26

By referring to the incentive constraints discussed in the previous section, we can
formalize such a third party’s optimization problem as follows. Given the default
game induced by the grand contract, the third party chooses an outcome function

25A recent exception is the work by Zheng (2011), who refers to our reciprocal contracting
approach in order to investigate collusion (formation of fund-pooling consortiums) between liquidity
constrained bidders.

26Che and Kim (2006) consider extensions of this problem where the objective function is a
weighted sum of the colluding agents’utilities with potentially different weights for different agents
or for different types. They also account for the possibility that not all of the agents collude. Our
discussion would apply to this general case as well.
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which maximizes the sum of the ex-ante utilities of the agents subject to the stand-
ard interim individual rationality and incentive compatibility constraints in (4.2)
and (4.5). The outcome which constitutes a solution to this maximization problem
determines the way that the agents will respond to the grand contract.
Suppose outcome ω̄ is a solution to the third party’s side contract selection program

outlined above. A nice property of ω̄ is interim incentive effi ciency: Outcome ω̄ is
Pareto undominated within the class of interim incentive compatible outcome func-
tions.27 An important consequence of this observation is the collusion proofness
principle. Instead of designing an indirect grand contract and making the agents
collude to support outcome ω̄, the principal could have induced the very same out-
come by designing a direct grand contract which asks the agents to report their
types. This direct contract replicates what each type of each agent does under the
outcome function ω̄. Suppose the agents are colluding when they play the default
game induced by this direct grand contract. Since ω̄ is already interim incentive
effi cient,28 the third party who is mediating the collusion cannot find a better course
of action than suggesting the agents to reveal their types truthfully. In other words,
ω̄ is collusion proof.
The collusion proofness principle, which is established by Laffont and Martimort

(1997 and 2000), provides a fundamental simplification in the analysis of designing
mechanisms when the responding agents have the ability to collude. Suppose we want
to find the outcomes that a principal can support in this setting. Collusion proofness
principle tells us that it is not necessary to consider all the grand contracts that
this principal can design and the third party’s reaction to each of these contracts.
Instead, the result implies that the set of all the outcomes that the principal can
support under collusion is identical to the set of collusion proof outcomes.
Now suppose that the collusive side contract is not designed by a hypothetical third

party but it is determined through the reciprocal contracting approach developed in
this paper. Unlike in the third party initiated collusion, reciprocal contracting gives
the agents the chance to reveal credible information about their types during the
negotiation of the side contract. As a consequence, collusion possibilities of the agents
are improved under reciprocal contracting. Specifically, the characterization result
in Theorem 1 asserts that the equilibrium outcomes for the reciprocal contracting

27To see this, suppose to the contrary that outcome function ω′ is interim incentive compatible
and it Pareto dominates ω̄. Then ω′ satisfies (4.5) by hypothesis and satisfies (4.2) since it Pareto
dominates ω̄. Moreover, ω′ yields a higher total payoff than does ω̄, which is a contradiction to ω̄
being a solution to the Laffont - Martimort program.

28Notice that the direct grand contract is essentially constructed by removing the irrelevant
messages —which are not sent on the equilibrium path —from the original indirect grand contract.
Since ω̄ is interim incentive effi cient under the indirect grand contract, it remains to be interim
incentive effi cient under the direct grand contract.
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game are the individually rational and incentive compatible outcomes under arbitrary
refusal beliefs and arbitrary posterior systems. As we discussed in the previous
section, this set of outcomes is larger than the set of outcomes satisfying the standard
interim individual rationality and incentive compatibility constraints in (4.2) and
(4.5).
A surprising aspect of reciprocal contracting is that it gives the principal the

opportunity to implement outcomes which are not collusion proof. In order to make
the comparison between the two approaches to collusion starker, let us consider the
best equilibrium of the reciprocal contracting game, which maximizes the sum of
the ex-ante expected utilities of the agents. Suppose ω̂ is the outcome function
resulting from this equilibrium. Given an arbitrary grand contract, both outcome ω̂
and outcome ω̄ (which is the solution to the third party’s program) maximize the
same objective function. However, due to the increased collusion potential under
reciprocal contracting, ω̂ can yield a strictly higher value for the objective than does
ω̄. In this case, ω̂ does not satisfy the standard individual rationality constraints in
(4.2). Instead, there exists a non-degenerate posterior system Π̂, under which ω̂ is
individually rational, i.e., it satisfies (4.1). Outcome ω̂ also satisfies the pre-revelation
and post-revelation incentive compatibility constraints in (4.3) and (4.4) under the
same posterior system Π̂.
This discussion reveals the possibility that outcome ω̂ may not be interim incentive

effi cient. That is, given the same grand contract, there may exist another outcome
ω′, which is interim incentive compatible and which Pareto dominates the “best”
reciprocal contracting outcome ω̂. Outcome ω′ fails to be a reciprocal contracting
equilibrium outcome because it does not satisfy the pre-revelation and post-revelation
incentive compatibility constraints in (4.3) and (4.4) under Π̂, even though it is
incentive compatible in the interim sense and therefore satisfies (4.5). The conclusion
is that outcome ω̂ may not be collusion proof: suppose the principal offers a direct
grand contract to implement ω̂. There may exist an alternative outcome function
available under this direct grand contract which is interim incentive compatible and
which Pareto dominates ω̂. In this case, the agents would agree on a reciprocal
collusive contract to support this alternative outcome rather than reporting their
types truthfully to support ω̂.29 Consequently, outcome ω̂ would be available only
through collusion among the agents following the design of an indirect grand contract.
This argument illustrates that collusion proofness principle does not extend to

settings such as the reciprocal contracting game, where there is possibility of inform-
ation revelation prior to finalizing a collusive agreement. The main problem is the

29Notice that this agreement does not require revelation of partial information with contract
offers. Therefore the alternative outcome can be supported with a pooling equilibrium of the
reciprocal contracting game.
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discrepancy between the interim incentive compatibility constraint in (4.5) and the
pre-revelation and post-revelation incentive compatibility requirements in (4.3) and
(4.4). In the following section, we will show that this discrepancy vanishes once we
introduce more structure for the agents’preferences.

6. Incentive Constraints under Private Values, Single Crossing, and
Transferable Utility

In this section, we argue that the incentive compatibility requirements in our
characterization theorem can be simplified further under the standard assumptions
of private values and single crossing. In particular, we show that, for an important
class of outcome functions which satisfy a monotonicity property, the incentive com-
patibility conditions in (4.3) and (4.4) boil down to the less demanding and more
familiar interim incentive compatibility constraint in (4.5).
Player i’s preferences exhibit private values, if his utility function depends only

on the default game actions and his own type, but not on the types of the other
players. In this case, the expected utility of player i can be written as ui (q, ti),
where q ∈ ∆A is a randomization over action profiles and ti ∈ Ti is player i’s type.
To describe the second condition we impose, we relabel types of player i such that his
type space Ti is a subset of the set of real numbers R. Preferences of player i satisfy
the single crossing property if for any two possibly randomized action profiles q
and q′, ui (q, ti) − ui (q

′, ti) is either decreasing or increasing in ti. Single crossing
property implies an order on the mixed action profiles. Accordingly, there exists a
function (which is unique up to affi ne transformations) hi : A→ R such that
(6.1)
Ea|q {hi (a)} ≥ Ea|q′ {hi (a)} if and only if ui (q, ti)−ui (q′, ti) is weakly decreasing in ti.

The single crossing property is trivially satisfied for players who have at most two
types. Notice that, in our Cournot default game, both players’preferences exhibit
private values and satisfy the single crossing property. Moreover, function hi (·)
which satisfies condition (6.1) can be set as the expected production level of player i.
In many settings, where preferences fulfill a one dimensional condensation condition
(Mookherjee and Reichelstein, 1992), function hi (·) will have a similar natural inter-
pretation. For instance, in independent private value auctions where each bidder’s
type is his own valuation, the single crossing property is satisfied when −hi equals
the probability that bidder i receives the auctioned object. Similarly, in public good
provision games where each provider’s type is the marginal value he receives from
the public good, condition (6.1) holds when −hi equals the total amount of the pub-
lic good. The single crossing property allows for designing schemes which separate
different types of players by assigning them different levels of hi.
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We now describe a structure which can be used by players to transfer utility among
themselves in addition to coordinating their actions in the default game. We require
that these utility transfers do not change the players’ expected payoffs. Given a
posterior system Π, we define function xi (t, β) as the transfer to player i when the
realized type profile and posterior belief are t and β respectively. A collection of these
functions x = {xi}i∈I is a transfer rule if it is budget balanced, i.e.,

∑
i xi (t, β) =

0 for all t, β; and outcome neutral, i.e., Eβ−i|Π−iEt−i|β−i
{
xi
(
ti, t−i, βi, β−i

)}
= 0

for all ti, βi, and i.
Outcome neutrality implies that transfer rules do not have any effect on the in-

centives of players at the interim stage. Accordingly, being augmented by a transfer
rule does not change the individual rationality or interim incentive compatibility
properties of an outcome function. However, these transfers would affect a player’s
incentive to make the accurate revelation in round 1 of the reciprocal contacting game
and his incentive to report the true type in round 2 after learning the revelations
of the other players. In order to account for these effects, we revisit the definitions
of pre-revelation and post-revelation incentive compatibility conditions. Under the
posterior system Π, a family of outcome functions

{
ωβ
}
β∈supp(Π)

is pre-revelation
incentive compatible with transfer rule x if

Eβ−i|Π−iEt−i|β−i
{
ui
(
ωβi,β−i (t) , ti

)
+ xi

(
t, βi, β−i

)}
(6.2)

≥ Eβ−i|Π−iEt−i|β−i
{
ui

(
ωβ
′
i,β−i (t) , ti

)
+ xi

(
t, β′i, β−i

)}
for all βi, β

′
i ∈ supp(Πi) such that βi (ti) > 0 and for all types ti of all players i.

Similarly, under the posterior system Π, a family of outcome functions
{
ωβ
}
β∈supp(Π)

is post-revelation incentive compatible with transfer rule x if for all β ∈
supp (Π),

Et−i|β−i
{
ui
(
ωβ (ti, t−i) , ti

)
+ xi (ti, t−i, β)

}
(6.3)

≥ Et−i|β−i
{
ui
(
ωβ (t′i, t−i) , ti

)
+ xi (t

′
i, t−i, β)

}
for each type pair ti, t′i of each player i.

6.1. The Cournot Default Game with Transfer Rules. We now consider the
Cournot default game one last time to demonstrate how a transfer rule can be used
in order to ensure pre-revelation and post-revelation incentive compatibility of an
outcome function. With tables (4.6) and (4.7) in Section 4.2.1, we have already
introduced the outcome function ω∗ which satisfies the individually rationality con-
ditions (4.1) under the refusal beliefs βnoi = 0 and the posterior system Π∗. This
posterior system required that player 2 reveals some partial information about his
type with his equilibrium path revelations. We also showed that outcome function ω∗
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satisfies the interim version of the incentive compatibility constraint in (4.5). How-
ever, we argued that ω∗ is not an equilibrium outcome of the reciprocal contracting
game since it fails the post-revelation incentive compatibility requirement in (4.4).
Even though truth-telling is optimal in the interim stage, once player 2 reveals more
information about his type, we showed that one type of player 1 would prefer to
imitate the other type.
We will now augment the outcome function ω∗ with a transfer rule x∗ and demon-

strate that the resulting outcome satisfies the pre-revelation and post-revelation in-
centive constraints in (6.2) and (6.3). To define x∗, we let x∗1 (t1, t2, β1, β2) be a
function which is constant in parameters (t2, β1) and which depends on parameters
(t1, β2) as below:

x∗1 (48, β2) = −x∗1 (56, β2) =

{
10.8 if β2 = 0
−6.48 if β2 = 0.8

.

In this two player environment, the balanced budget condition is satisfied by setting
x∗2 = −x∗1. Recall that Π∗ assigns probabilities 3/8 and 5/8 to the two posteriors
β2 = 0 and β2 = 0.8 respectively. Hence, x∗ is outcome neutral since

3

8
(10.8) +

5

8
(−6.48) = 0.

Transfer rule x∗ is constructed mainly as a means of transferring utility from one
type of player 1 to the other type. Player 2 is used more like a budget-breaker in this
construction. The direction of the transfer depends on the revelation that player 2
makes in round 1. The transfers cancel out when we take expectations over posterior
β2 or over type t1.
Now consider the family of outcome functions

{
ωβ
}
β∈supp(Π∗) such that ω

β = ω∗

for both posteriors in the support of Π∗. First notice that, under Π∗, outcome
function ω∗ is pre-revelation incentive compatible with transfer rule x∗: constraint
(6.2) is trivially satisfied for player 1 since he does not make any revelation in round
1. The same condition holds as an equality for the two types of player 2 since
Et1 {x2 (t1, β2)} is zero regardless of his revelation. Moreover, ω∗ is post-revelation
incentive compatible with x∗ as well: constraint (6.3) is satisfied for player 2 since
ω∗ is interim incentive compatible and x∗ does not depend on t2. It requires slightly
more work to establish the same for player 1.30 In Section 4.2.1, we argued that

30Suppose the realized posterior on the type of player 2 is β2 = 0. Once augmented by the
transfer rule x∗, outcome function w∗ induces a payoff difference of (186 + 10.8) − (94− 10.8) =
113. 6 between the two types of player 1. Constraint (6.3) demands this difference to be bounded
as below:

(56− 48)Et2|β2=0y
∗
1 (48, t2) ≥ 113.6 ≥ (56− 48)Et2|β2=0y

∗
1 (56, t2)

(8) 16 ≥ 113.6 ≥ (8) 12
27



outcome ω∗ does not satisfy constraint (4.4) for player 1. However, now that ω∗ is
augmented by the transfer rule x∗, the analogous condition in (6.3) holds for both
types of player 1, under both posterior distributions.
Let us summarize our findings regarding the incentive compatibility of the out-

come function ω∗ in the Cournot default game. ω∗ is interim incentive compatible;
yet it is not incentive compatible under the posterior system Π∗, which is the only
posterior system that makes this outcome individually rational. Therefore ω∗ is not
an equilibrium outcome of the reciprocal contracting game. Nevertheless, ω∗ satisfies
the incentive compatibility conditions in (6.2) and (6.3) when it is augmented with
the transfer rule x∗. This transfer rule depends on both the round 1 revelations
and the round 2 type reports of the players. In the context of our Cournot default
game,31 this observation points to the existence of an equilibrium outcome function
which is different from ω∗ but which induces the same type dependent production
levels and the same type dependent payoffs as in ω∗.

6.2. General Default Games with Transfer Rules. In this section, we prove
a result extending what we observed in the context of the Cournot default game
to general settings satisfying the private values and single crossing conditions. We
show that, as long as a monotonicity property holds, an interim incentive compatible
outcome function can be augmented with a transfer rule such that the resulting
outcome satisfies the pre-revelation and post-revelation incentive constraints in (6.2)
and (6.3). Such a transfer rule can be found for any arbitrary posterior system.
We start with recalling standard results from screening theory. Under the private

values assumption and the single crossing property, incentive compatibility demands
a monotonic relationship between player i’s type and function hi (·) which satisfies
condition (6.1). In particular, interim incentive compatibility condition (4.5) im-
plies interim monotonicity of the outcome function, i.e., Et−i|β0−i {hi [ω (ti, t−i)]} is
weakly decreasing in ti for all i. For instance, in our Cournot default game example,
interim monotonicity requires that each player’s expected production is weakly de-
creasing in his cost, where the expectation is taken over the different types of the
other player given the prior beliefs. Moreover, many of the incentive compatibility
constraints are redundant under these conditions: if the interim (or post-revelation)

Now Suppose the realized posterior on the type of player 2 is β2 = 0.8. Outcome w∗ together with
the transfer rule x∗ imply a payoff difference of (186− 6.48)− (94 + 6.48) = 79. 04 between the two
types of player 1. Constraint (6.3) demands this difference to be bounded as below:

(56− 48)Et2|β2=0.8y
∗
1 (48, t2) ≥ 79. 04 ≥ (56− 48)Et2|β2=0.8y

∗
1 (56, t2)

(8) 16 ≥ 79. 04 ≥ (8) [(0.8) 0 + (0.2) 12]

Since these inequalities hold, we conclude that (6.3) is satisfied for player 1.
31Recall that utility transfers between the players are possible to support in this game, since it

explicitly allows for monetary transfers and the payoffs are quasi-linear in these transfers.
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incentive compatibility constraints are satisfied between all the “adjacent”types of
player i, then all the other interim (or post-revelation) incentive compatibility con-
straints, including the ones between the non-adjacent types of player i, hold as well.
In order to state our result, we must also define a stronger monotonicity require-

ment for outcome functions. We say that outcome function ω is ex-post monotone
if hi [ω (ti, t−i)] is weakly decreasing in ti for all t−i and all i. For instance, in our
Cournot default game example, ex-post monotonicity requires that each player’s pro-
duction level is weakly decreasing in his cost regardless of the other player’s type.
Unlike interim monotonicity, ex-post monotonicity is not implied by interim incentive
compatibility.

Proposition 2. Suppose all the players’preferences exhibit private values and sat-
isfy the single crossing condition (6.1). Suppose further that outcome function ω is
interim incentive compatible and ex-post monotone. Let Π be an arbitrary posterior
system. There exist a family of outcome functions

{
ωβ
}
β∈supp(Π)

consistent with ω

and a transfer rule x such that
{
ωβ
}
β∈supp(Π)

is pre-revelation and post-revelation
incentive compatible with x under Π.

An interim incentive compatible outcome function can be implemented with a
direct revelation mechanism where the players report their private information all at
once. According to the result above, if this function is ex-post monotone as well, it
can be implemented with a gradual revelation mechanism where the players reveal
their types in two successive steps. After the first step, the players update their prior
belief on the types of the other players to a posterior belief. After the second step,
all the remaining private information is revealed.
Proposition 2 directly follows from Lemma 1 in Celik (2013). We provide a brief

discussion of the proof here and refer the readers to that paper for the details. We
guarantee consistency of

{
ωβ
}
β∈supp(Π)

by defining it as ωβ = ω for all β. In a
setting where player types are continuously distributed, the revenue equivalence the-
orem identifies the transfers under which the ex-post monotone outcome ωβ would
satisfy the post-revelation incentive constraints in (6.3) up to a constant term. In
our discrete type environment, we rely on the discrete type analogues of these trans-
fers. We use the constant term to ensure that the resulting transfer rule is outcome
neutral. By construction,

{
ωβ
}
β∈supp(Π)

satisfies the pre-revelation constraints in
(6.2) as equalities together with the outcome neutral transfers. The next step in the
proof is achieving budget balance without spoiling the incentives provided by the
transfer rule. To this purpose, we follow the expected externality method of Arrow
(1979) and d’Aspremont and Gerard-Varet (1979). However, unlike in a simultaneous
revelation game, where the expectations are relevant only at the interim stage, the

29



expectations in our two-step setting are based on the posterior distributions which
are endogenously determined by the players’revelations.
Many outcome functions which are important from an economic perspective are

ex-post monotone.32 Moreover, ex-post monotonicity is suffi cient but not necessary
for the construction of

{
ωβ
}
β∈supp(Π)

and x satisfying the pre-revelation and post-
revelation constraints. A weaker condition would impose monotonicity only for the
types which may end up in the support of the same posterior belief. When the
outcome neutrality of the transfer rule is imposed only on the equilibrium path (for
ti, βi pairs such that βi (ti) > 0 instead of all ti, βi pairs), this weaker monotonicity
condition is suffi cient for implementation with a two-step procedure (Celik, 2013,
Lemma 2).

6.3. Collusion Proofness Revisited. We now revisit the collusion interpretation
of the reciprocal contracting procedure, which we first discussed in Section 5. We
assume that the default game (which may have been induced by a grand contract)
satisfies the private values and single crossing conditions. Suppose the aim is finding
the “best”reciprocal contracting outcome. In Section 5, we identified this outcome as
the one which maximizes the sum of the ex-ante expected utility levels of the players /
agents subject to the individual rationality and incentive compatibility requirements
developed in Section 4. In light of Proposition 2, we consider a relaxed version of this
maximization problem, where the objective function and the individual rationality
condition are the same as before, but the incentive compatibility requirement is
replaced by the weaker interim incentive compatibility constraint in (4.5). We denote
the solution to this relaxed problem as ω̃.
Since outcome ω̃ is individually rational, we know that it satisfies condition (4.1)

under some refusal beliefs β̃no and posterior system Π̃. Now suppose that outcome
ω̃ is ex-post monotone.33 In this case, it follows from Proposition 2 that ω̃ can
be augmented with a transfer rule which makes the resulting allocation satisfy the
pre-revelation and post-revelation incentive compatibility conditions in (6.2) and
(6.3). Assuming that the players can commit to utility transfers as part of their
contracts, this observation means that the best reciprocal contracting outcome is
either ω̃, or a transfer rule augmented version of it inducing the same type dependent
actions (without considering the utility transfers) and the same interim payoffs as
ω̃. Moreover, outcome ω̃ is interim incentive effi cient, i.e., it is Pareto undominated

32For instance, Mookherjee and Reichelstein (1992) show that the interim incentive compatible
outcome function which maximizes the objective of a principal (the expected value of the gross
benefit from the chosen economic alternative minus the transfers to the agents) is ex-post monotone.

33In many applications (such as the Cournot competition, independent private value auctions,
public good provision) maximization of the (weighted) sum of players’expected payoffs yields an
ex-post monotone outcome function.
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within the class of interim incentive compatible outcome functions. As we argued in
Section 5, this last property implies collusion proofness of ω̃ as well as of its transfer
rule augmented versions.

7. Conclusion

Kalai et al. (2010) propose a complete information game where each of the two
players can write a contract that conditions on the other player’s contract. An im-
portant feature of these conditional contracts is the punishment clauses they contain.
Thanks to these clauses, a player who deviates from his equilibrium play can be pun-
ished by the other player and left with a payoff as low as his minmax value. Kalai et
al. show that the equilibrium outcomes in this game coincides with the outcomes that
could be supported by a centralized mechanism designer who can enforce actions of
all players that agree to participate in his mechanism, including the punitive actions
to be followed in case that a player unilaterally decides not to participate. Forges
(2013) and Peters (2013) observe that the same characterization result stands for in-
complete information games with more than two players, as long as the punishment
clauses are maintained as parts of the conditional contracts.
In this paper, we consider a reciprocal contracting game of incomplete information

where the punishment possibilities in the contracts are constrained by sequential
rationality. We allow the players to make commitments when they all agree to some
course of action. Otherwise, when there is a disagreement between the players, all
contracts are null and void, and each player is free to choose his own action. The
set of equilibrium outcomes here is much smaller than the set of outcomes described
by Forges and Peters. Our reciprocal contracts support fewer outcomes than the
ones available for a mechanism designer who is not constrained with the sequential
rationality of the punishments.
In the absence of non-credible punishments, a better fitting benchmark for condi-

tional contracts would be an alternative centralized design scheme where the mech-
anism designer is constrained not to influence the play of the players when one of
them unexpectedly refuses to participate in his mechanism. This constrained design
scheme is already used by the earlier literature in modeling cartel agreements between
firms (Cramton and Palfrey, 1990 and 1995) and collusion between multiple agents
interacting with the same principal (Laffont and Martimort, 1997 and 2000). With
our characterization result, we show that the set of equilibrium outcomes of the
reciprocal contracting game is larger than the outcomes supportable under this con-
strained mechanism design scheme. Reciprocal contracts give the players the ability
to signal their private information to each other even in the event that the players
cannot reach to an agreement. The constrained design approach cannot replicate
this signaling aspect of reciprocal contracting.
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Thinking of collusion as a reciprocal contracting game rather than a constrained
design problem extends the collusion opportunities available to the agents. Almost
paradoxically, the additional opportunities given to the colluding agents allows the
principal to implement outcomes which would not have been implementable if col-
lusion was mediated by a constrained mechanism designer. These supplementary
outcomes are not collusion proof: their implementation requires that the principal
designs an indirect grand contract and lets the agents collude on their response to
it. The discrepancy between the constrained mechanism design and reciprocal con-
tracting approaches to collusion disappears in commonly studied environments with
private values, single crossing, and transferable utilities.

8. Appendix

Proof of Proposition 1 and Theorem 1.

PART I:
Suppose there exists a perfect Bayesian equilibrium of the reciprocal contracting

game such that ω is the equilibrium outcome function. First, we will construct Π,
βno, and

{
ωβ
}
β∈supp(Π)

by using the properties of the equilibrium. Then we will show
that ω satisfies the individual rationality and incentive compatibility requirements
together with the constructed Π, βno, and

{
ωβ
}
β∈supp(Π)

.

1) Construction of Π, βno, and
{
ωβ
}
β∈supp(Π)

Consider equilibrium path contracts offered by an arbitrary player i. After ob-
serving each of these contracts, other players update their beliefs on player i’s type
using the Bayes rule. We let the equilibrium distribution over these posteriors be Πi.
Since the ex ante expectation over the posteriors equals the prior beliefs, distribution
Πi is Bayes plausible. The posterior system Π is defined as {Πi}i∈I .
There are infinitely many possible mechanisms for each player and therefore there

are infinitely many δ mappings from revelations to the mechanism profiles. Accord-
ingly, whatever strategies the other players are following in equilibrium, a player can
always find a list δ̂ which would match the lists of the other players with probability
zero. Consider an arbitrary contract for player i which includes the list δ̂. Notice
that by offering this contract, player i guarantees that the continuation game is the
non-cooperative play of the default game with probability one. We let refusal be-
lief βnoi be the (possibly off the equilibrium path) posterior belief on player i’s type
following the observation of this contract. βno equals {βnoi }i∈I .
Consider the stage of the game after the announcement of a profile of equilibrium

path contracts. Consistent with the Bayes rule, the beliefs are updated to some
posterior β which is in the support of Π. Starting at this stage, the perfect Bayesian
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equilibrium pins down the continuation strategy for each type of each player (in-
cluding the types which are not in the support of the posterior, i.e., ti such that
βi (ti) = 0). These strategies determine a mapping from the type profiles to distri-
butions over actions. We let ωβ be this mapping. Bayes rule implies that the family
of outcome functions

{
ωβ
}
β∈supp(Π)

is consistent with ω.
2) Verifying the constraints
We now need to show that ω, Π, βno, and

{
ωβ
}
β∈supp(Π)

together satisfy the
individual rationality and incentive compatibility constraints.
The right hand side of the individual rationality constraint in (4.1) corresponds to

the payoff from a particular (possibly off the equilibrium path) strategy for player i
with type ti. The strategy involves first offering a contract that includes the mechan-
ism list δ̂ that we discussed above. This contract triggers the non-cooperative play of
the default game. In the sequel, the strategy instructs player i to follow the Bayesian
equilibrium strategy for the default game under the posteriors β−i (which depend on
the other players’contracts) and βnoi . Sequential rationality requires that the other
players follow their Bayesian equilibrium strategies in the continuation game as well.
For the strategy explained above not to be a profitable deviation for player i with
type ti, the individual rationality constraint in (4.1) must hold.
It follows from the construction of the posterior system Π that any distribution

βi in the support of Πi corresponds to a posterior belief on player i following the
observation of an equilibrium path contract offer. Therefore, for player i with type
ti, the right hand side of the pre-revelation incentive compatibility constraint in (4.3)
equals to the expected payoff from offering the contract corresponding to posterior
β′i ∈ supp (Πi) and then following the equilibrium continuation play.34 For this
strategy not to be a profitable deviation, condition (4.3) must be satisfied.
Similarly, post-revelation incentive compatibility condition in (4.4) follows from

the fact that type ti of player i does not strictly prefer to follow the continuation
equilibrium strategy of any other type after observing the contract offers of all players.

PART II:
Suppose there exists ω which satisfies the individual rationality and incentive com-

patibility conditions together with some Π and βno. Incentive compatibility implies
existence of a family of outcome functions

{
ωβ
}
β∈supp(Π)

which is consistent with ω
and which satisfies conditions (4.3) and (4.4). We start our proof by assuming that
all outcome functions in this family are deterministic. That is, function ωβ maps
type profiles t into a single action profile in A rather than a distribution over action

34In the equilibrium which supports outcome ω, there may be multiple contract offers by player i
which all lead to the same posterior β′i. In this case, the relevant deviation strategy is randomizing
between these contracts with probabilities which reflect their equilibrium frequencies.
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profiles, for all β in the support of Π. Under this assumption, we will construct a
profile of strategies and beliefs satisfying conditions (i) - (iv) defined in Proposition
1. Then, we will argue that these strategies induce ω as the outcome function. As a
third step to our proof, we will show that the strategies and beliefs we constructed
constitute a perfect Bayesian Equilibrium of the reciprocal contracting game. In the
final step, we will accommodate the possibility of stochastic ωβ by showing that the
players’correlating messages can be used in order to support stochastic outcomes.
1) Strategies and Beliefs
a) Equilibrium contracts:
Recall that a contract by player i consists of a list of direct mechanisms δ (·) and

a revelation β̂i ∈ ∆Ti. In the equilibrium we construct, all types of all players
submit a unique list of mechanisms δ∗ (·), satisfying condition (i) of Proposition
1. We will describe this list shortly. The equilibrium also instructs each player
i to make revelations only within the support of Πi. Since Π is a belief system,
Πi is a Bayes plausible distribution of posteriors on player i’s types. Therefore
there exists a revelation strategy for player i where different types of this player
decide on the revelations in such a way that, whenever this player makes a revelation
β̂i ∈ supp (Πi), Bayes rule assigns the posterior β̂i to his type. This revelation
strategy is consistent with condition (ii) of Proposition 1.
On the equilibrium path, player i makes revelations only within the support of

Πi. Yet, in order to fully define function δ
∗, we have to describe the values it will

take for all posteriors. In our construction, whenever player i makes a revelation β̂i
which is not in the support of Πi, the equilibrium contracts interpret this as if this
player made some other revelation within the support of Πi. To formalize this idea,
we let β1

i be an arbitrary posterior in the support of the distribution Πi and define
a transformation function β̄i : ∆Ti → supp (Πi) such that

β̄i

(
β̂i

)
=

{
β̂i if β̂i ∈ supp (Πi)

β1
i otherwise

.

The notation β̄
(
β̂
)
refers to the profile of posterior beliefs

{
β̄i

(
β̂i

)}
i∈I
which is in

the support of the posterior system Π.
Recall that ωβ is assumed to be deterministic for all β ∈ supp (Π) for this step of

the proof. Let ωβi (t) ∈ Ai be the action taken by player i in action profile ωβ (t). We
are now ready to state the list of mechanisms that the players will submit as part of
their reciprocal contracts. A direct mechanism for player i maps the type reports t
and the |I| ×K matrix of correlating messages n into an action in Ai. When players
reveal β̂ ∈ ×i∈I∆Ti in the first round, function δ∗ determines the mechanisms in the
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second round according to the following formula:

(8.1) mβ̂
i (t, n) = ω

β̄(β̂)
i (t) .

Notice that this function is constant in n. That is, when ωβ is deterministic, the
mechanisms do not need to depend on the correlating messages. We will later use
these messages to show that a stochastic ωβ can also be supported by direct mech-
anisms as well.
b) Equilibrium beliefs:
After the first round of the game, all players observe the contract offers. De-

scription of an equilibrium demands specifying the beliefs on each player’s type as a
function of the contract he offers. On the equilibrium path, player i offers contracts
with the list δ∗ described above and a revelation β̂i in the support of Πi. After
observing this offer, abiding by the Bayes rule, the other players update their belief
on this player’s type to β̂i. Notice that these equilibrium path beliefs satisfy the
“accuracy requirement”(ii) of Proposition 1. Off the equilibrium path, the beliefs
on player i’s type are updated to β1

i ∈ supp (Πi) when player i’s contract consists of
list δ∗ and a revelation β̂i /∈ supp (Πi); and to the refusal belief β

no
i when player i’s

contract includes a list different from δ∗.
In other words, if player i offers the list δ∗ and submits a revelation β̂i in the

support of Πi, the other players update their belief to β̂i assuming that his revelation
is “accurate.”Otherwise, when he offers the list δ∗ and submits a revelation outside
the support of Πi, the other players change their belief to β

1
i ∈ supp (Πi). However,

if the contract of player i includes a list of mechanisms other than δ∗, then the belief
on this player’s type is updated to the refusal belief βnoi regardless of the revelation
made.
c) Equilibrium reports to direct mechanisms which are induced by δ∗:
Suppose, in the first round, all players offer contracts including the list δ∗ we

described above. In the second round, each player i should submit a type report ti
and a correlating message vector ni to the resulting mechanisms. In the equilibrium
we construct, ti equals the type of player i and all dimensions of ni are uniformly
and independently distributed on the set [0, 1], satisfying conditions (iii) and (iv)
respectively in Proposition 1.
d) Off the equilibrium path default game actions:
Suppose the players’ contracts do not all include the same list of mechanisms.

According to the rules of the reciprocal contracting game, each player must choose
a default game action in the second round. In this case, the equilibrium stipulates
that each player chooses his Bayesian equilibrium action (or randomization over the
actions) under the beliefs updated according to the rule (b) above.
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For completeness, we should also specify the off the equilibrium path continuation
strategies and beliefs for the decision nodes following the players’agreement on a list
of mechanisms other than the list δ∗ described above. We set these as arbitrary.35

2) Outcome function supported by the equilibrium
Wewill now argue that if players follow the strategies described above, the resulting

outcome function is indeed ω. Consider the equilibrium path subgame that begins
when players all submit the list δ∗ and their revelations are β̂ ∈ supp (Π). The
equilibrium strategies prescribe that each player i reports his true type ti in round
2 and determines his round 1 revelation message β̂i in a way to support Πi as the
distribution over the posteriors on his type. The proof follows from the fact that the
family of outcome functions

{
ωβ
}
β∈supp(Π)

is consistent with ω:

ω (t) = Eβ̂|Π,tω
β̂ (t) for all type profiles t.

3) Sequential rationality of strategies, consistency of beliefs
In this part of the proof, we demonstrate that the strategies and beliefs described

above constitute a perfect Bayesian equilibrium of the reciprocal contracting game.
The behavioral strategies described in (d) are sequentially rational by construction.
Beliefs in (b) are consistent with the behavior in (a), since they follow from the
Bayes rule on the path of play. Strategies in (c) prescribe that players reveal their

true types to the mechanisms once they update their beliefs to β̄
(
β̂
)
. Optimality

of truthful revelation follows from the post-revelation incentive compatibility (4.4)
of
{
ωβ
}
β∈supp(Π)

. Optimality of the chosen correlating messages is trivial, since they

do not affect the outcome when ωβ is deterministic.
We now consider deviations from the behavior described in (a). There are two

types of possible deviations in the first round of the game. First, a player i with type
ti may choose to offer a contract which includes the equilibrium list δ

∗ together with
some revelation β̂′i such that β̂

′
i ∈ supp (Πi) and β̂

′
i (ti) = 0.36 Pre-revelation incentive

compatibility (4.3) of
{
ωβ
}
β∈supp(Π)

implies that this is not a profitable deviation.
Second, a player i with type ti may choose to offer a contract which includes a list
other than δ∗. According to the beliefs in (b), all players change their belief on player
i to βnoi , and the beliefs on the other players are determined by the posterior system
Π. After this deviation, all players follow their non-cooperative default game actions
in the second round. For player i, this continuation behavior yields an expected

35These decision nodes are reached only if all players deviate from their equilibrium behavior.
Our solution concept does not impose any requirement on actions chosen on such nodes.

36A revelation outside of supp (Πi) is strategically equivalent to the revelation β
1
i which is in

supp (Πi).
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payoff equal to the right hand side of the constraint (4.1). Individual rationality of
the outcome function ω implies that this is not a profitable deviation either.
4) Stochastic ωβ

The arguments above apply when all outcome functions in family
{
ωβ
}
β∈supp(Π)

are
deterministic. In this final part of the proof we discuss how the uniformly distributed
correlating messages can be utilized to deal with stochastic ωβ, without changing
the incentives provided to the players. Suppose that nki is the k

th dimension of
the correlating message sent by player i. We define nk as

⌊∑
i n

k
i

⌋
, which is the

fractional part of the real number
∑

i n
k
i (or in other words

∑
i n

k
i mod 1). This

function aggregates the numbers
{
nki
}
i∈I sent by the players into another number

in the unit interval. What is crucial for our derivation is noticing that
⌊∑

i n
k
i

⌋
is

uniformly distributed on [0, 1] as long as all nki are uniform on [0, 1].

When ωβ̄(β̂) (t) is a stochastic function, its value indicates a probability distribu-
tion on the set of action profiles A rather than a single element of it. Recall that A
is a closed subset of the Euclidean space RK . Therefore the value of ωβ̄(β̂) (t) can

be represented with a joint cumulative distribution function on RK . Given ωβ̄(β̂) (t),
let F k

(
·|a1, ..., ak−1

)
be the marginal cumulative distribution function for the kth

dimension of A conditional on a1, ..., ak−1 being the values on the first k − 1 dimen-
sions.37 Notice that F 1, ..., FK are suffi cient to describe the distribution ωβ̄(β̂) (t).
With the help of the random variables n1, ..., nK , we can construct action profile
a =

(
a1, ..., aK

)
iteratively as below:

a1 = min
{
v : F 1 (v) ≥ n1

}
,

a2 = min
{
v : F 2

(
v|a1

)
≥ n2

}
,

....

aK = min
{
v : FK

(
v|a1, ..., aK−1

)
≥ nK

}
.

a1 to aK are well defined since marginal cumulative distribution functions are right
continuous. Moreover the distribution of action profile a which is constructed in this
way matches the distribution indicated by ωβ̄(β̂) (t). This means that we can now
update the direct mechanisms in (8.1), make them depend on n1, ..., nK as described

as above, and generate the distribution on actions as implied by ωβ̄(β̂) (t).
Notice that utilizing the correlating message in this way does not spoil incentives

already provided to the players. In particular, each player is still indifferent between

37For instance, F 1 (·) is the marginal cumulative distribution function for the first dimension of
A and F 2

(
·|a1
)
is the marginal cumulative distribution function for its second dimension given that

a1 is the value that the first dimension assumes.
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all the correlating messages in his disposal if he expects the other players to follow a
uniform distribution when choosing their own correlating messages.38 �
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