
Intro

◮ let X be a set of alternatives, X × X is the Cartesian product
of X with itself. A binary relation on X is a subset
P ⊂ X × X

◮ orderings of alternatives can be thought of as binary relations
- e.g. if x and y both elements of X and (x , y) ∈ P then one
might say that x is at least as good as y , or x � y



Examples

1. a set of alternative consumption bundles

2. a set of alternative policies with x � y meaning that x is
’socially preferred’ to y

3. a set of alternative policies with x � y meaning that x would
defeat y in a referendum between the two

4. a set probability distributions with x � y meaning that the
distribution x first order stochastically dominates y

5. a set of strategy rules in a game with x � y meaning the rule
x weakly dominates the rule y

6. a set of numbers with x � y meaning that x is bigger than y

(an example where a binary relation is an ordering)



◮ some binary relations have strange properties - for example

TC BB IS

C 1 2 3
F 2 3 1
M 3 1 2

rows are parties, numbers represent their preferences over
policies TC,BB and IS. Every policy is defeated in a majority
vote against some alternative (Condorcet paradox).



◮ a preference relation is a special binary relation intended to
represent an individual choice process - one imagines that it
has two properties

1. Completeness for any pair (x , y) ∈ X × X either x � y or
y � x or both.

2. Transitivity for any x , y , z ∈ X x � y and y � z ⇒ x � z

◮ a preference satisfying these two properties is sometimes
called a rational preference relation



Utility Functions

◮ a function u : X →R is called a utility function representing
preference relation � if for all x , y ∈ X

x � y ⇐⇒ u (x) ≥ u (y)

◮ intransitive preference relations typically can’t be represented
by utility functions - if a binary relation � is intransitive, then
there are three options x , y ,and z such that x � y ; y � z but
not x � z . Now suppose there is a utility function
representing this relation. Then x � y ⇒ u (x) ≥ u (y) while
y � z ⇒ u (y) ≥ u (z) so that u (x) ≥ u (z) which by
definition means that x � z . Since we know this is false, the
assertion that there is a utility function must also be false.
This is an example of a proof by contradiction.



◮ a critical question is whether there is some way to infer the
existence of a preference relation from something that you can
observe.

◮ Let B be a family of subsets of X and P (X ) the collection of
all subsets of X (the power set of X ) - a correspondence
C : B → P (X ) is called a choice correspondence if C (B) 6= ∅
and C (B) ⊂ B for all B ∈ B

◮ the set B corresponds to the set of experiments or outcomes.

◮ the choice correspondence C satisfies the weak axiom of

revealed preference if for any pair of sets B and B ′ and points
x ∈ B ∩ B ′ and y ∈ B ∩ B ′ , x ∈ C (B) and
y ∈ C (B ′) ⇒ x ∈ C (B ′).



◮ example:
◮ X = {x , y , z},
◮ B = {{x} , {y} , {z} , {x , y} , {x , z} , {y , z} , {x , y , z}}
◮ and
◮ C ({x , y}) = {x} ;C ({x , y , z}) = {x , y}
◮ fails the weak axiom because y is chosen given choice set

{x , y , z} and x is also in {x , y , z}. x is chosen in {x , y} but y
isn’t



◮ every rational preference relation supports a choice
correspondence in the obvious way

C� (B) = {x ∈ B : x � y∀y ∈ B}

provided that this set is always non-empty

◮ Theorem: every choice correspondence supported by a
rational preference relation satisfies the weak axiom



Proof: Suppose not. Then there are sets B ,B ′and points
x ∈ B ∩ B ′ and y ∈ B ∩ B ′ such that

◮ (i)x ∈ C� (B); (ii) y ∈ C� (B ′) and (iii) x /∈ C� (B ′).

◮ Since C� is supported by a preference relation x � y by (i).

◮ By (iii) there is a point z in B ′ such that z � x but not x � z

( z ≻ x).

◮ By (ii) y � z ≻ x . Then x � y � z but not x � z , so the
preference relation isn’t transitive.



◮ we want the other way around - if we run a series of
experiments and find that some agents’ choices obey the weak
axiom, can we conclude that the trader will behave as if he
has a rational preference ordering? can we discover this
preference ordering?

◮ Not generally - Example - X as above with

◮ B = {{x , y} , {y , z} , {x , z}} and

◮ (i) C ({x , y}) = x , (ii) C ({y , z}) = y and (iii) C (x , z) = z .

◮ Note that this set of choices implies intransivity because if the
rationalizing preference relation exists, then x ≻ y by (i),
y ≻ z by (ii) and z ≻ x by (iii). The weak axiom holds
because the sets in B simply don’t give the decision maker an
opportunity to violate the weak axiom.



◮ Theorem: let C be a choice correspondence satisfying the
weak axiom. Suppose that for any three distinct points x , y ,
and z in X there exist sets B and B ′ in B such that
B = {x , y} and B ′ = {x , y , z}. Then there is a rational
preference relation supporting C .

◮ Proof: Define the binary relation �C as follows
◮ x �C y iff ∃B : x ∈ B ; y ∈ B and x ∈ C (B).
◮ Since C is defined on all sets in B and B contains all two

element sets, then for any pair of points {x , y} either
◮ x ∈ C ({x , y}) or y ∈ C ({x , y}) or both.
◮ This is equivalent to x �C y or y �C x or both.



◮ Suppose now that x �C y and y �C z .

◮ C ({x , y , z}) must contain at least one point.

◮ If that point is x then x �C z by definition, and the relation is
transitive.

◮ If the point is y then since x �C y there is some set B ′′ such
that y ∈ B ′′, and x ∈ C (B ′′), so by the weak axiom
x ∈ C ({x , y , z}) which gives x �C z .

◮ If the point is z , use the same reasoning to show that
y ∈ C ({x , y , z}), from which the same logic gives
x ∈ C (x , y , z) or x �C z .

◮ This proves that �C is transitive.



◮ So �C is a rational preference relation (note how the
assumptions were used in this argument - what would go
wrong if B did not contain all sets of the form {x , y , z}?).

◮ if the set of alternatives X were finite, which would be easier
to check, a preference relation � is complete and transitive, or
a choice correspondence C satisfies the weak axiom?

◮ �C supports a choice correspondence. Is it the same as C?

◮ If X is finite, B consists of all subsets of X and C satisfies the
weak axiom, can you construct a utility function that
represents the preference relation �C ?



◮ X ⊂ Rn and � is a binary relation on Rn × Rn.

◮ � is continuous if whenever {xn}
∞
n=1

and {yn}
∞
n=1

are
(convering) sequences of consumption bundles satisfying
xn � yn for all n, then limn→∞ xn � limn→∞ yn

◮ Theorem: let � be a continuous rational preference ordering
satisfying the property that x ≥ x ′ implies x � x ′ and x 6= x ′

and x ≥ x ′ together imply x ≻ x ′ (monotonicity). Then there
exists a utility function u that represents �.



◮ Proof: Let e ∈ R
N
+ be such that e = [1, 1, . . . 1]. Let

Z =
{

x ′ ∈ R
N
+ : x = αe for some α ≥ 0

}

◮ For any x ∈ R
N
++ there is a z ∈ Z such that z ≥ x (one such

would be z ≡ [maxj xj ] · e), and so by monotonicity, z � x .

◮ Similarly, there is a z ′ ∈ Z (i.e. 0) such that x ≥ z ′, and
therefore x � z ′.

◮ So the sets P+ (x) = {z ∈ Z : z � x} and
P−(x) = {z ′ ∈ Z : x � z ′} are both non-empty.

◮ By completeness of preferences, z � x or x � z for all z ∈ Z ,
so Z = P+(x) ∪ P−(x) .



◮ P+(x) and P−(x) must have a point in common (if they don’t
then P−(x) is the complement of P+(x) in Z which means at
least one of them must be an open set violating continuity).

◮ Furthermore they can have only one point in common by
monotonicity. Let α (x) e be this point. The claim is that
α (x) is the desired utility function.

◮ To see it, suppose that α (x) ≥ α (y). Then by monotonicity
α (x) e � α (y) (e). By transitivity, x ∼ α (x) e � α (y) e ∼ y

implies x � y . The reverse implication is proved in a similar
way.


