
Midterm Fall 2018
Econ 600

Do each question, each has equal marks.

1. Let X be a set consisting of a finite number of elements, {Bi ⊂ X} a col-
lection of choice sets consisting of all non empty subsets of I that contain
at least 2 elements, and C a choice correspondence satisfying the weak
axiom of revealed preference. Prove (using only the weak axiom, don’t
refer to utility functions) that (a) there is an outcome w in X such that
there is no 2 element set Bi such that w ∈ C (Bi), or (b) w ∈ C (Bi)
implies that x ∈ C (Bi) for every x ∈ Bi. Give a counterexample for the
case where {Bi} does not contain all subsets of X .
Answer: A constructive proof. Pick any point x0 ∈ X . Now just search
all the experiments in B. If we can’t find a B0 such that x0 ∈ C (B0) then
we have found the element we want and completed the proof. Otherwise,
if there are some B where x0 ∈ C (B) then we can check them to see
whether there is one, say B0 such that x0 ∈ C (B0) and B0 contains a
point x1 6∈ C (B0). If we can’t find such a B0 then again, we have found
the element we want and have proven the result.
We could call what we just did ’checking x0’ to see if it satisfies the con-
dition. Now lets just ’check x1’. If the check succeeds, again we have
proven the theorem. As above, if it fails, the we will be able to find an
x2 6= x1 to check. The key point in this proof is that x2 can’t be equal to
x0. If it were, then x0 and x1 are in the intersection of B0 and B1. Since
x0 ∈ C (B0) then by the weak axiom x0 ∈ C (B1), whereas by construction
x2 6∈ C (B1). If we have come this far, then x2 is the element we want. To
see this just take the set B′ = {x0, x1, x2}. x2 can’t be in C (B′) because
if it were, the weak axiom would force it to be in C (B1) which it isn’t
by construction. It can’t be in C (B0) because if it was, the weak axiom
would require that it be in C (B1), again a contradition.
The contradiction to the theorem is the X = {x0, x1, x2} with C ({x0, x1}) ={x0},C ({x1, x2}) =
{x1}, C ({x0, x2}) = {x2} which satisfies the weak axiom.

2. In the directed search problem we discussed in class with two workers
and two firms, suppose the probability that each worker is a ’good’ worker
(what we called λ) is equal to 3

8
, the high wage firm offers wage 3

4
while the

low wage firm offers 1

2
. Describe the Bayesian Nash equilibrium. What is

the highest value of λ for which there is an equilibrium where good workers
only apply at wage 3

4
? What is the lowest value of at which ’bad’ workers

use a pure strategy? Assuming you see an outcome in which only one of
the workers is employed at wage 3

4
(while the other worker is unemployed),

write down a formula for the probability with which the employed worker
is a good worker (you can write this formula as a function of λ and π∗

without explicitly solving for π∗)? Write down the corresponding formula
for the probability that the worker employed at the high wage is a good
worker if the other worker is employed at the low wage? Find these two
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posterior probabilities explicitly for the case where λ = 1

2

Answer: The good worker applies at wage 3

4
for sure, the bad worker

applies at 3

4
with probability 25

128
- just substitute into the formula in the

text. When λ = 2/3 the good worker is just indifferent about applying at
wage 3

4
and wage 1

2
when he or she expects the other to apply to the high

wage for sure. If the value of λ goes any higher, the good workers start to
mix. When λ = 1

2
applying at the high wage firm is weakly dominated,

they start to mix when λ falls below that.
On the Bayes rule question
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4
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The formula for the other case is similar. When λ = 1

2
, π∗ = 0 so the

posterior probability the worker is a good worker is 1 in both cases.

3. In the Ellsberg experiment, a subject is shown a box containing 100 red
and black balls but is not told how many of each color are in the box.
Then she is asked to bet on drawing, say a red ball from the box. Sub-
jected expected utility suggests that the subject will make decisions based
on a prior belief p that she thinks represents the probablity that a ball
drawn from that box will be red. There is no way to know what this
subjective belief is before an experiment, but it has been suggested that
an experimenter might discover it in the following way:

• The experimenter creates a bet in which he promises to choose a
number q randomly somewhere in the interval between 0 and 1. To do
this, he’ll use a distribution with a strictly positive density function
f (·) which is continuous between 0 and 1. The subject is then asked
to name a number p′ ∈ [0, 1]. If q ≥ p′ the subject will play a lottery
that pays $1 with probability q (and $0 otherwise). If q < p′ the
subject is paid $1 if a red ball is drawn from the box and $0 otherwise.
Assuming the subject is a subjective utility decision maker, will this
method induce the subject to reveal her actual belief p when she
plays? Prove or give a counter example.
Answer: The lottery is subjective only if q < p′ so the subject will
choose p to maximize

F (p′) pu (R) +

ˆ

1

p′

qu (R) f (q) dq
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The first order condition is

u (R) pf (p′) = p′u (R) f (p′)

which has unique solution p′ = p.

• In the bet described in the previous bullet, what does the subject’s
choice of p′ reveal if the subject is known to be uncertainty averse (in
the sense that they have multiple priors and evaluate them by lowest
expected utility).
Answer: The lowest prior the dm believes is possible.

• A second alternative is proposed as simpler - the subject asked to
give a number r between 0 and 1. The subject will then be paid

$
(

1− (1− r)
2
)

if a red ball is drawn from the box, and −$r2 oth-

erwise. If the subject truly is a subjective utility maximizer, will her
choice reveal her subjective probability p? If so, you should be able
to prove it. If not, explain why and give an example to illustrate. If
your answer is no, are there any special conditions under which her
answer will reveal her subjective probability?
Answer: Now the subject maximizes

pu
(

1− (1− r)
2

)

+ (1− p)u
(

−r2
)

which gives first order condition

pu′

(

1− (1− r)
2
)

2 (1− r) = (1− p)u′
(

−r2
)

2r

which gives that the optimal r depends on u. Simplifying

p2 (1− r)

(1− p) 2r
=

u′
(

−r2
)

u′

(

1− (1− r)
2
)

which shows that r = p if and only if

u′
(

−p2
)

= u′

(

1− (1− p)
2
)

which is true if the dm is risk neutral.

3


