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Abstract

Using a well known environment where buyers have identically and independently

distributed private values for an object, we model mechanism design without full ob-

servability as a game of imperfect information in which some buyers may not be in-

formed of the commitments made by the seller of the object. Informed buyers can

pretend to be uninformed but uninformed cannot pretend to be informed. In equi-

librium, the seller holds an auction among informed buyers with a reserve price that

depends on how many informed buyers there are. This reserve price is kept secret from

informed buyers when they report their values.
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1 Introduction

An important lesson of mechanism design is the “power of commitment.” An optimal auc-

tion, for example, requires the seller to set a reserve price. If no buyer chooses to bid that

price, the seller is supposed to commit himself never to trade. Ex post, the seller will not

want to carry out that commitment, as the large literature on auctions with resale explains,

but the seller will benefit ex ante by convincing buyers that the commitment will be honored.

Commitment is something that is relatively easy to accomplish in digital markets. Price

offers are generated by computer programs that cannot be easily re-written. Yet as pricing

mechanisms begin to appear in digital markets, it is apparent that there is another important

assumption required by mechanism design - one that is usually not discussed at all. Even if

a seller can commit, this might be of limited benefit if buyers do not understand what the

seller has committed to.

The fact that buyers do not notice sellers’ commitments has been widely documented in

the marketing literature. Dickson and Sawyer (1990), for example, asked buyers in super-

markets about their price knowledge as they were shopping. Only 50% of all respondents

claimed to know the price of the object they had just put in their basket. Even when the

item being placed in the basket had been specially marked down and heavily advertised,

25% of consumer did not even realize the good was on special.

Supermarket prices are staring consumers in the face as they look at the shelves. It

would seem much harder for consumers to be aware of selling techniques on the internet.

For example, many websites use click stream pricing, whereby the price offer that is made

to a customer can be made to depend on exactly what the buyer does before getting to the

offer page (i.e., the stream of clicks that leads them to the website). A higher price may

be offered to a consumer who searches directly for a deluxe model of a product than to a

consumer who searches for the standard model then asks how much it would cost to upgrade.

Another example is airline ticket pricing. This propensity for being uninformed may be one

reason why airlines, for example, make so little effort to explain the details of their pricing

algorithms to buyers.

The point of this paper is to consider the implications of the possibility of buyers not
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knowing the selling mechanism for the behavior and payoffs of informed buyers as well as

the seller. To this end, we choose the best known mechanism design environment of all -

independent private value auctions (Myerson, 1981).1 Our seller will realize that some buyers

are uninformed, but will not be sure how many uninformed buyers there are, or who they

are. Our buyers will be in a similar position. Those who are uninformed will understand that

they do not understand the seller’s mechanism. Informed buyers will know the mechanism

and understand that there are uninformed buyers, but again, will not know the identities of

the uninformed buyers.

We emphasize that our uninformed buyers are not behavioral - they have rational expec-

tations in the equilibria we construct. They can be thought of as randomly attentive who

understand their own inattention (Masatloglu, 2015; Masatloglu, Nakajima, and Ozbay,

2012). Formally, we treat the mechanism design process as a game of imperfect information

in which uninformed buyers do not see part of the history - the part where the seller commits

to a mechanism.

We first show that standard auction formats simply are not robust to the possibility that

there are uninformed buyers. The key to this result is that when a seller “deviates” and

changes the mechanism, informed buyers will understand the change and respond to it in

the usual way, but uninformed buyers will not respond at all.

What this does is to give the seller the opportunity to extract surplus from the uninformed

without losing any surplus from the informed. To see this consider a second price auction.

Suppose the uninformed believe that the seller is holding a second price auction. In the usual

way, a best response is for them to bid their values. The informed buyers know whether or

not the seller is using a second price auction, so, of course, they also bid their values. The

seller can then deviate, explaining to the (informed) buyers that if they want to bid in a

second price auction, then they have to provide a certain password along with their bid.2 If

the high bidder in the auction has given the password, the bidder pays the second highest

bid; if the high bidder does not give the password, the bidder pays the winning bid.

1For a full list of references, see, for example, Krishna (2010).
2The term “password” is just used by way of analogy. In practice, this is where the “click stream pricing”

method, and other things like it would be used. Burying lower prices beneath a complex web of click
streams is a way to provide a password since the informed buyers will discover the correct stream, while the
uninformed will not.
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The password analogy is one we will use again below. Of course, we do not necessarily

mean this to be taken literally. In the click stream pricing example, realizing that there is an

alternative path to a price quote is the same thing as knowing a password. Meet the com-

petition (match lower prices elsewhere) requires buyers to provide information uninformed

buyers do not have, again similar to a password. Coupons that offer price discounts must

often be presented in some form at the time of a transactions, again in a manner similar to

a password.

In a standard setting with full observability, an optimal mechanism will want to specialize

the outcome for any aspect of a buyer’s type. In our context this means that the seller in

equilibrium will want to treat informed and uninformed buyers of the same value differently.

This gives rise to a somewhat unusual incentive problem in the sense that informed buyers

can “verify” they are informed by providing a password before the transaction. They do not

have to do this unless it is in their interest. Uniformed buyers, on the other hand cannot

pretend to be informed. This fact is the core argument in much of what follows below.

We show that equilibrium selling mechanisms discriminate against the uninformed in

a special way. Uninformed buyers in our model always receive a take-it-or-leave-it offer.

Since uniformed buyers do not understand how a seller is allocating a good, they cannot see

deviations. In any outcome in which the uninformed believe that their price offer will depend

on their value, the seller will be able to deviate and extract surplus from them. Indeed one

implication of this is that in markets in which it is very unlikely that buyers are informed, the

selling mechanism will appear to be a simple take-it-or-leave-it price with high probability.

Our model suggests that reserve prices will vary with the actual number of uninformed

buyers. The reason is that the uninformed represent an outside option for the seller when

holding an auction with the informed. For example, if there are no uninformed buyers, the

seller wants to set the reserve price equal to the value of a buyer whose virtual value is

zero, as is standard. However, if there is an uninformed buyer, the seller wants a higher

reserve price such that the virtual value is equal to the seller’s outside option of selling to

the uninformed. Since there is a gap between these two reserve prices, the seller has to

keep the actual reserve secret to prevent informed buyers whose values are in the gap from

pretending to be uninformed. The fact that sellers will want to keep some aspects of their
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mechanism hidden from informed buyers is one of the main implications of the possibility

that there are uninformed buyers.3 This result also provides a simple explanation for why

reserve prices are so often kept private in practice.

We show that uninformed buyers always reduce the seller’s revenue relative to what

they would be with full observability. This is because those who do not observe the seller’s

commitments nonetheless have rational expectations regarding the seller’s mechanism. This

means that the uninformed buyers create a constraint on the set of mechanisms that are

available to the seller.

We also show that uninformed buyers are offered higher prices than they would be if there

were no commitment at all, because the seller needs to discourage informed buyers from

pretending that they are uninformed. This means that uninformed buyers with low values

are worse off due to the presence of informed buyers. Those with high values, however, can

be better off, because of reduced competition as informed buyers may not meet the reserve

prices in the auctions. Indeed, at least some of the reserve prices are set higher than in

standard auctions for the seller to exploit the option of making take-it-or-leave-it offers to

uninformed buyers.

In contrast to uninformed buyers, the informed with low values are better off relative

to what they get from the standard auction under full observability. This is because the

reserve price for the auction when every buyer turns out to be informed is set lower than

in the standard auction to prevent each individual informed buyer from pretending to be

uninformed. As explained above, at least some of the other reserve prices are higher than in

the standard auction, so informed buyers with high values can be worse off. However, the

presence of uninformed buyers also means that informed buyers face reduced competition

for the good as the former do not participate in any of the auctions. We show that when the

total number of potential buyers becomes sufficiently large, the effect of reduced competition

outweighs the effect of higher prices, so informed buyers with high enough values are better

off relative to full observability.

3This result applies even if the seller uses a second price auction, where in the standard setting buyers’
behavior would be independent of the reserve price.
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1.1 Literature

As mentioned above, the idea that consumers might not notice prices in an old one in the

marketing literature, as in Dickson and Sawyer (1990) and references there in. The approach

had been used earlier in economics, as in, say Butters (1977), in which buyers randomly

observe price offers in a competitive environment. In that literature, firms advertise prices

which some buyers see, while others do not.4 These papers considered the same problem

that we do, which is how this unobservability would affect the prices that firms offer. The

difference here is that we are interested in mechanisms, not prices.

Peters (2014) also uses the idea of unobservatility in a competitive setting in which the

mechanism design problem is much simpler. The problem we consider here is not competitive.

We are interested in the more basic issue of how unobservability affects mechanism design.

As for mechanism design, our basic problem involves a standard mechanism design problem

in which buyers have outside options that vary with their type. Such a problem was studied

by McAfee (1993). His model had buyers whose outside option involved waiting until next

period to purchase. Here, though the outside option does vary with type, it is endogenous

because the seller can change it by modifying the offer made to uninformed buyers.

With buyers potentially uninformed of the selling mechanism but nonetheless having

rational expectations, the seller’s commitment power is limited. The limitation on the seller’s

commitment power in our unobserved mechanism problem is therefore endogenous, which

differentiates our model from the existing literature on mechanism design problems under

limited commitment (Bester and Strausz, 2001; Kolotilin, Li and Li, 2013; Liu, Mierendorff

and Shi, 2014; Skreta, 2015). A recent paper by Akbarpour and Li (2018) provides another

model of limited commitment. They assume that each individual buyer only observes the part

of the seller’s commitment in relation to the buyer’s own report, and impose a “credibility”

constraint that the seller does not wish to secretly alter other parts of the commitment.

Insofar as the set of feasible deviations available to the seller with respect to each buyer

depend on the extensive form of the mechanism, their approach to limited commitment

remains exogenous.

4See also Varian (1980), or Stahl (1989, 1994). Varian (1980) calls buyers informed if they see prices of
all firms, and uninformed if they do not.
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A recent literature has studied optimal mechanism design with exogenous communication

constraints (Deneckere and S. Severinov, 2008; Mookherjee and Tsumagari, 2014). In our

problem, uninformed buyers have the correct belief about the equilibrium mechanism, and as

a result, they are uncommunicative. We show that the equilibrium mechanism corresponds

to the solution to an optimal mechanism design problem in which informed buyers voluntarily

reveal their values while uninformed buyers remain silent.

2 The Model

There are n potential buyers of a single homogenous good. Each buyer has a privately known

value that is independently drawn from the interval [0, 1]. Assume for the moment, all values

are distributed according to some distribution F with strictly positive density f . Buyers’

payoff when they buy at price p is given by v− p. The seller’s cost is zero, so the profit from

selling at price p is just p.

There is a common message space M which is used by all buyers to communicate with

the seller. For example, M might be the set of possible browsing histories for a buyer. A

message from buyer i will be denoted bi. We make no assumptions on M itself except that

it is rich enough to embed the set of buyer values. and that the set of feasible messages is

common knowledge.

The point of the seller’s mechanism is to generate an offer.5 It is important to note that

even buyers who are uninformed can understand a take-it-or-leave-it offer. This is the one

commitment that is understood by every buyer. To avoid complexities that have little to do

with unobservability, as least as a first attempt at unobservability, we will assume that the

seller’s mechanism determines the identity of the buyer who receives the offer, and what this

offer is. We assume that if this offer is refused, the game ends without trade. It would be

possible, of course, to consider more complex interactions when an offer is rejected, but for

the sake of simplicity we will not consider such alternatives here.

5In the standard mechanism design paradigm, a mechanism produces an allocation according to a map-
ping from messages. Representing the output of a mechanism as an offer instead of an allocation has no
implications. This is no longer the case in our unobserved mechanism problem. See section 5 for additional
comments on modeling the output of an unobserved mechanism as an algorithm.
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What differentiates our paper from the standard mechanism design literature is that some

buyers do not know what the seller’s mechanism is. We model this by a game of imperfect

information in which some buyers see the first move by the mechanism designer while others

do not. We assume that the probability that a buyer does not see the commitment is α.

Whether or not a buyer can see the mechanism is private information, and is independent

of each other. Our solution concept is just perfect Bayesian equilibrium, so buyers who do

not observe the mechanism will none the less correctly guess what it is in equilibrium.

With this preamble, we can describe the seller’s mechanism more formally. A mechanism

γ for the seller is a collection {M, pi, qi}Ni=1, where M is the common message space, pi is a

mapping from a profile of messages (b1, . . . , bN) to a take-it-or-leave-it offer to buyer i, and

qi is a mapping from (b1, . . . , bN) to a probability of the offer to each buyer i. Let Γ be the

set of mechanisms.

Buyer i’s type is a pair (v, τ), where v is the value for the object, and τ is a binary

variable that is equal to ε when the buyer is informed, and µ when the buyer is uninformed.

A strategy rule for a buyer is a function σi : [0, 1] × {ε, µ} × Γ → M that specifies what

message the buyer will send for each of the values conditional on whatever the buyer knows

about the seller’s mechanism. Since an uniformed buyer never sees the mechanism a seller

offers, we have the informational constraint

σi (vi, µ, γ) = σi (vi, µ, γ
′) = σi (vi, µ)

for all γ and γ′. Notice that this definition restricts buyers to pure strategies. We retain this

assumption throughout the paper.

As mentioned above, informed buyers can pretend to be uninformed, but not conversely.

This allows the seller to identify informed buyers by, for example, asking for a password

along with a bid. To prevent the uninformed buyers from guessing this password, it has

to be random. One way to understand this is to imagine that the seller randomizes over

mechanisms in order to make this password unpredictable. Refer to this mixture as ψ ∈

4 (Γ). Let R (γ, (σi (·, ·, γ))ni=1) be the expected revenue for the seller from mechanism γ

when an uninformed buyer i uses strategy σi (·, µ) an informed buyer i uses σi (·, ε, γ).
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A perfect Bayesian equilibrium for this problem is a mixture ψ for the seller, and pairs of

strategy rules (σi (·, ε, γ) , σi (·, µ))Ni=1 for informed and uninformed buyers respectively, which

satisfy

Ev−i,τ−i
[qi (σi (vi, ε, γ) , σ−i (v−i, τ−i, γ)) ·max {vi − pi (σi (v, ε, γ) , σ−i (v−i, τ−i, γ)) , ε}]

≥Ev−i,τ−i
[qi (bi, σ−i (v−i, τ−i, γ)) ·max {vi − pi (bi, σ−i (v−i, τ−i, γ)) , 0}] (1)

for all vi ∈ [0, 1], bi ∈M and realized γ from the mixture ψ;

Ev−i,τ−i,γ [qi (σi (vi, µ) , σ−i (v−i, τ−i, γ)) ·max {vi − pi (σi (vi, µ) , σ−i (v−i, τ−i, γ)) , ε} |ψ]

≥Ev−i,τ−i,γ [qi (bi, σ−i (v−i, τ−i, γ)) ·max {vi − pi (bi, σ−i (v−i, τ−i, γ)) , 0} |ψ] (2)

for all vi ∈ [0, 1], and bi ∈M; and

Eγ [R (γ, (σi (·, ·, γ))ni=1) |ψ] ≥ R (γ′, (σi (·, ·, γ′))ni=1) (3)

for all γ′ ∈ Γ.

In the expressions (1) and (2), the terms σ−i (v−i, τ−i, γ) should be understood to mean

that whenever one of the buyers other than i is uninformed, they use the strategy σ−i (v−i, µ).

The reason that the max operation appears when taking expectations is because a mechanism

generates an offer instead of an outcome. It will be assumed throughout that this offer is

take-it-or-leave-it. As mentioned above, if it is refused there is no trade at all.

2.1 Relationship to standard mechanism design

Once the outcome of the seller’s randomization is realized, the equilibrium of the continuation

game is a simple Bayesian equilibrium. So we could try to analyze it using direct mechanisms

in which buyers’ types consist of both their value and whether or not they are informed.

However, there are some important issues to bear in mind.

The first is that information about whether or not a buyer is informed is quite different

from the information about the value because the informed buyer can “verify” to the seller
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that knowledge but the uninformed buyer cannot.6 Being informed in this problem is similar

to being able to speak French, or being able to play the piano. We explained above how

the seller could give the buyer the opportunity to reveal this part of the type. The seller

randomizes over mechanisms, and includes in each mechanism a password - for example a

real number selected in the interval [0, 1] using a uniform distribution. The seller would

publish this password as part of the mechanism. The informed buyers see it, the uninformed

do not.

The second issue comes from the fact that a mechanism is just a move in an imperfect

information game. Since uninformed buyers cannot see deviations by the seller, uninformed

buyers with different values will receive the same offer in our equilibrium. Of course, it is

possible to interpret a mechanism like this as a direct mechanism in which the seller commits

to an outcome that is independent of buyer’s value. This does not quite work here since if

uninformed buyers do report their values, the seller can no longer commit not to use the

information contained in those reports. As a consequence we need to retain, at least initially,

much of the structure of the indirect mechanism.

Third, the outcomes that are produced by the seller in response to messages are not like

outcomes in a standard auction. Here, an outcome is just an offer. It is possible that buyers

in equilibrium will receive offers that they will not want to accept. As will be discussed, the

standard reduced form functions have to be reinterpreted in order to make them work.

2.2 Example

As an example to illustrate how the imperfect information part of the story affects the

analysis, suppose that the seller is using a second price auction in which bids are submitted

in US dollars. The high bidder wins and pays the second highest US dollar bid. We would

argue that this can never be an equilibrium mechanism.

To see why, suppose the seller deviates to a new mechanism in which bids can be either

in Canadian or US dollars. The buyer who submits the highest bid (exchange rate adjusted)

wins the auction. If the winning bid was submitted in Canadian dollars, the winner pays

the second highest bid whether it is in US dollars or in Canadian dollars. If, on the other

6Verifiable information is discussed in Green and Laffont (1986) or Strausz (2016) among others.

9



hand, the winning bid is submitted in US dollars, the winner pays the bid.

The logic is that only informed buyers realize they can submit bids in Canadian dollars.

If they choose to do so, they know that their bid will be treated in the usual second price way,

so they will prefer to bid their value expressed in Canadian dollars. Uninformed buyers will

not observe the deviation and erroneously believe that their US dollar bids will be treated as

values in a second price auction. When they win they will be offered a trade at the value that

they bid. This allows the deviating seller to extract all the surplus of the uninformed buyer

when they win the auction. Moreover, the seller does so without sacrificing the revenue from

informed buyers. Informed buyers do not have to bid in Canadian dollars, but they observe

the deviation by the seller and understand that any bid they submit in US dollars will result

in a strictly higher payment than the corresponding bid in Canadian dollars. So bidding in

Canadian dollars is a dominant strategy for any informed buyer who wants to trade.

What we can learn from this example is that all equilibrium mechanisms will be dis-

criminatory. Standard auction forms as they are usually studied can never be equilibrium

mechanisms when there are uninformed buyers.

3 Unobserved Mechanism Design

For the remainder of the paper, we will focus on mechanisms that are symmetric with respect

to buyer identity and assume that continuation equilibria are fully symmetric.7 Given a

mechanism γ, a profile of types {(v1, τ1) , . . . , (vn, τn)} then results in trader i receiving an

offer with probability qi (σ (vi, τi, γ) , σ (v−i, τ−i, γ)). The offer made in this case will be

pi (σ (vi, τi, γ) , σ (v−i, τ−i, γ)).

We assume that qi (σ (vi, τi, γ) , σ (v−i, τ−i, γ)) > 0 if and only if there is a v′i such that

σ (v′i, τi, γ) = σ (vi, τi, γ)

and

pi (σ (v′i, τ, γ) , σ (v−i, τ−i, γ)) ≤ v′i.

7We drop the subscript from the strategy rule σi, but keep the subscripts in vi and τi, and in the mapping
pi and qi, so we can use p and q to represent the outcome profiles.
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Any outcome function that does not satisfy this property is payoff equivalent to one that

does. We think of qi (σ (vi, τi, γ) , σ (v−i, τ−i, γ)) as the probability with which i receives a

“serious” offer. Similarly, using payoff equivalence, whenever

qi (σ (vi, τi, γ) , σ (v−i, τ−i, γ)) = 0,

we can assume

pi (σ (vi, , τi, γ) , σ (v−i, τ−i, γ)) = 1.

3.1 Uninformed buyers

Given an equilibrium (ψ, σ(v, µ), σ(v, ε, γ)), we can now define a reduced form probability as

follows

Q (vi, τi) ≡ Ev−i,τ−i,γ [qi (σ (vi, τi, γ) , σ (v−i, τ−i, γ)) |ψ] .

For all vi and τi such that Q (vi, τi) > 0, define

P (p̃, vi, τi) ≡ Pr {pi (σ (vi, τ, γ) , σ (v−i, τ−i, γ)) ≤ p̃|ψ} .

Finally,

P (vi, τi) =


∫
p̃ dP (p̃, vi, τi) if Q (vi, τi) > 0

infv′i:Q(v′i,τi)>0

∫
p̃ dP (p̃, v′i, τi) otherwise.

(4)

By definition, P (vi, τi) is either equal or close to some expected offer that is made with

positive probability.

As in standard mechanism design, the payoff to a buyer of value vi in the continuation

equilibrium is

U (vi, τi) ≡ Q (vi, τi) ·
∫

max {vi − p̃, 0} dP (p̃, vi, τi) .

By standard arguments, the function U (vi, τi) is continuous in vi.

The following result helps simplify the analysis.

Theorem 1. In any symmetric equilibrium P (vi, µ) is independent of vi.
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Proof. Suppose the theorem is false and there is a pair v′i and vi such that P (v′i, µ) >

P (vi, µ). We can assume Q (v′i, µ) and Q (vi, µ) are both strictly positive. This is because

the definition (4) forces P (vi, µ) for an uninformed buyer with values who does not receive

offers to be either the same as, or arbitrarily close to the expected price for one with values

who does receive offers.

By construction, all offers in the support of P (·, v′i, µ) are accepted by an uninformed

buyer with value v′′i for whom σ (v′′i , µ) = σ (v′i, µ), so we can choose v′′i such that U (v′′i , µ) >

0. Let

β (v′i) ≡ inf {v′′i : σ (v′′i , µ) = σ (v′i, µ) and U (v′′i , µ) > 0} .

We claim that p̃ ≥ β (v′i) for almost all p̃ in the support of P (·, v′i, µ). If this were false, the

seller could raise revenue by increasing his price offer on a set of positive measure. Since

uninformed buyers would not observe this change in the price offer, their reporting behavior

would not be affected. Uninformed buyers whose values are at least β (v′i) would continue to

accept these offers.

The implication of the above claim is that buyers whose values are close to β (v′i) will

have expected payoffs arbitrarily close to zero. Since by assumption P (vi, µ) < P (v′i, µ),

∫ β(v′i)

0

dP (p̃, vi, µ) > 0

which violates incentive compatibility since buyers whose values are close enough to β (v′i)

could profitably deviate by adopting the strategy σ (vi, µ).

The proof of Theorem 1 illustrates why uninformed buyers are bad for sellers. The seller’s

best revenue occurs under the full commitment power. Uninformed buyers cannot see the

commitment made by the seller directly. This creates a situation in which the seller can no

longer commit not to use information revealed by the uninformed during communication.

Even though sellers technically have full commitment power, uninformed buyers take that

commitment power away from them.

Say that a mechanism is non-discriminatory if

(Q (vi, ε) , P (vi, ε)) = (Q (vi, µ) , P (vi, µ))
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for all vi. Theorem 1 implies that informed buyers must also receive a single take-it-or-

leave-it offer if the mechanism is non-discriminatory. This cannot be an equilibrium since

the seller can deviate and offer the informed a second price auction without affecting the

uninformed and without violating incentive compatibility. A non-discriminatory mechanism

can be supported in equilibrium only in the trivial case where there are no informed buyers.

Corollary 1. If all buyers are uninformed for sure, then there is a unique equilibrium in

which the seller randomly selects a buyer to make an offer that maximizes (1− F (p)) p.

Corollary 1 illustrates our endogenous approach to limited commitment in mechanism.

While full observability, with α = 0, corresponds to the standard mechanism design problem

under full commitment, full non-observability, with α = 1, is different from no commitment.

Indeed, if n = 1, the literature on the Coase Conjecture initiated by Coase (1972) establishes

that without any commitment power the seller can do no better than offering the good at

the price of 0 (Fudenberg, Levine, and Tirole, 1985; Gul, Sonnenschein, and Wilson, 1986),8

while the equilibrium outcome given in Corollary 1 corresponds to what the seller could

achieve with full commitment (Riley and Zeckhauser, 1983).9

3.2 Informed buyers

In what follows, we make the usual assumption that virtual value is increasing.

Assumption 1. The virtual value, given by the function

φ(v) = v − 1− F (v)

f(v)
,

is strictly increasing in v.

8This requires stationarity of the equilibria. We have what is known in the literature as the no-gap case
because the lowest value equals the seller’s reservation value. For non-stationary equilibria, see Ausubel and
Deneckere (1989).

9The conclusion that there is an equilibrium outcome with n = 1 and α = 1 that is the same as the full
commitment outcome does not rely on the present restriction to mechanisms with single offers. Without this
restriction, it is an equilibrium in which the seller commits to a single take-it-or-leave-it offer that maximizes
(1− F (p)) p, and the uninformed buyer accepts the offer if and only if the value is above the offer, with
the belief that any subsequent offer will lead to an offer of 0 after a rejection. See section 5 for additional
comments on unobserved mechanisms as producing algorithms.
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Assumption 1 implies that there is a single value r∗ where φ(r∗) = 0. This value r∗

represents the optimal reserve price in a standard auction, regardless of the number of

buyers. That is, when α = 0, the seller’s outside option is always 0, so the reserve price is

such that the virtual value of the buyer with v at the reserve price is equal to the seller’s

outside option. Since this optimal reserve price is independent of the number of buyers, r∗

is also the optimal take-it-or-leave-it offer when the seller is dealing with a single buyer.

At the other extreme, when α = 1, by Corollary 1 there is no informative communication

from the n buyers, and the seller randomly chooses one of them to make a take-it-or-leave-it

offer. For convenience, define

π(p) = (1− F (p))p

as the revenue function from a take-it-or-leave-it offer p. Since the seller’s outside option is

0, the optimal offer is again r∗. By Assumption 1, π(p) increases for p < r∗ and decreases

for p > r∗.

When α ∈ (0, 1), symmetric equilibrium outcome functions turn out to depend on the

number of informed and uninformed buyers, but not on their identities. Payments by in-

formed buyers will be determined below using standard incentive conditions, together with

the condition that they do not want to pretend to be uninformed. If the seller decides to

make an offer to an uninformed buyer the seller must decide what that offer will be. By The-

orem 1, this offer cannot depend on the uninformed buyer’s value, but again it can depend

on how many buyers are informed. Moreover, since the informed buyers can pretend to be

uninformed, the take-it-or-leave-it offer to the uninformed will impact the incentive of the

informed buyers. To characterize symmetric equilibrium outcomes, we make the following

simplification.

Definition 1. An equilibrium (ψ, σ(·, µ), σ(·, ε, γ)) involves pooling of uninformed buyers if

for all vi, v
′
i, we have qi (σ (vi, µ) , σ (v−i, τ−i, γ)) = qi (σ (v′i, µ) , σ (v−i, τ−i, γ)) for all v−i and

τ−i, and for all γ in the support of ψ.

We will focus on equilibria that pool uninformed buyers in what follows. This amounts

to an equilibrium refinement. When uninformed buyers are indifferent among a number of

different messages only because all messages they send yield the same expected payoff, they
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could send different messages. In particular, uninformed buyers who get the same expected

payoff of 0 because they have low values can send a message to the seller indicating that

they are “not interested.” This is ruled out by Definition 1.

Combined with Theorem 1, the restriction to pooling of uninformed buyers allows us to

focus on equilibria in which uninformed buyers simply “keep silent.” It then follows from a

straightforward revelation-principle argument that without loss we can impose the standard

incentive compatibility constraints for informed buyers to truthfully report their values, to-

gether with the new incentive condition in the present setup that informed buyers do not

wish to keep silent. This allows us to present the characterization of equilibrium outcomes

in terms of a constrained optimization problem (Theorem 2 below).10 We stress that we

are characterizing the outcomes, not the mechanisms; as we have explained previously, un-

informed buyers have rational expectations about the equilibrium mechanism, and they are

prevented from participating in it by the seller’s use of randomization (i.e., password).

We can now drop σ from the outcome functions p and q, and for informed buyers, we also

drop the dependence of their strategy on the realized mechanism γ. Let the realized number

of uninformed buyers be m. For each m = 0, . . . , n − 1, denote the (n − m)-dimensional

profile of reported values as v(m). For each informed buyer i, we also write the profile as

v(m) = (vi, v−i(m)). The seller’s mechanism is

{(q(v(m)), p(v(m)))n−1m=0, (tm)nm=1},

where q(v(m)), m = 0, . . . , n−1, is the profile of probabilities that the seller assigns the good

to the n − m buyers who have reported the profile v(m), with p(v(m)) the corresponding

profile of price offers, and tm, m = 1, . . . , n, is the take-it-or-leave-it offer to a randomly

selected buyer among those who have kept silent. For each m = 0, . . . , n−1, let b(m;n−1, α)

be the probability that there are m uninformed buyers among n − 1 buyers, given by the

binomial distribution:

b(m;n− 1, α) =

n− 1

m

 (1− α)n−1−mαm.

10For brevity, we will not mention the refinement of Definition 1 when we speak of equilibria of the game.
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Then, the truth-telling payoff U(vi, ε) of an informed buyer with value vi is given by

n−1∑
m=0

b(m;n− 1, α)Ev−i(m) [qi(vi, v−i(m)) max {vi − pi(vi, v−i(m)), 0}] ,

There is no loss in assuming pi(vi, v−i(m)) ≤ vi, because otherwise we can always set

qi(vi, v−i(m)) = 0 and pi(vi, v−i(m)) = vi.
11 Then we have

U(vi, ε) =
n−1∑
m=0

b(m;n− 1, α) (Qm(vi, ε)vi − Pm(vi, ε)) , (5)

where

Qm(vi, ε) = Ev−i(m) [qi(vi, v−i(m))] ,

and

Pm(vi, ε) = Ev−i(n−m) [qi(vi, v−i(m))pi(vi, v−i(m))] .

Theorem 2. Any outcome of an equilibrium can be implemented by the seller holding a

second-price auction among informed buyers with a reserve price rm (if the realized number

m of uninformed buyers is at most n − 1) and making a take-it-or-leave-it offer tm to a

randomly selected uninformed buyer (if m ≥ 1) when all bids are below rm, where rm and

tm+1, m = 0, . . . , n− 1, maximize the seller’s revenue

n−1∑
m=0

b(m;n, α)(n−m)

∫ 1

rm

φ(vi)F
n−1−m(vi)f(vi)dvi +

n∑
m=1

b(m;n, α)F n−m(rm)π(tm), (6)

subject to a “bidding constraint” for every vi,

U(vi, ε) =
n−1∑
m=0

b(m;n− 1, α)

∫ vi

min{vi,rm}
F n−1−m(w)dw

≥U(vi, µ) =
n−1∑
m=0

b(m;n− 1, α)

m+ 1
F n−1−m(rm+1) max{vi − tm+1, 0}. (7)

11We cannot do this with uninformed buyers, as the price offers do not depend on their value.
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Proof. From (5), the standard incentive condition for truthful reporting by an informed

buyer i with value vi is

U(vi, ε) ≥
n−1∑
m=0

b(m;n− 1, α) (viQm(v′i, ε)− P (v′i, ε)) ,

for any v′i ∈ [0, 1]. The necessary and sufficient conditions for an informed buyer with value

vi to truthfully report the value are the envelope condition

dU(vi, ε)

dvi
=

n−1∑
m=0

b(m;n− 1, α)Qm(vi, ε), (8)

and the monotonicity condition that the right-hand side of (8) above is non-decreasing in vi.

If the informed buyer with value vi deviates and keeps silent, he gets the same expected

payoff U(vi, µ) as an uninformed buyer with value vi, given by

n−1∑
m=0

b(m;n− 1, α)

m+ 1
Ev(m+1)

[
1−

∑
j

qj(vj, v−j(m+ 1))

]
max{vi − tm+1, 0},

where
∑

j qj(vj, v−j(m + 1)) is the total probability that the seller makes a price offer to

one of the buyers whose reports constitute the profile v(m + 1), with
∑

j qj(v(n)) = 0 by

definition. The bidding condition for an informed buyer j with value vi not to keep silent is

then

U(vi, ε) ≥ U(vi, µ).

Since all offers to informed buyers are accepted for sure, the seller’s expected total revenue

from informed buyers is

n−1∑
m=0

b(m;n, α)Ev(m)

[∑
j

qj(v(m))pj(v(m))

]
.

Since all buyers are ex ante symmetric, we can rewrite the above as

n−1∑
m=0

b(m;n, α)(n−m)

∫ 1

0

Pm(vi, ε)f(vi)dvi.
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Using the identity

b(m;n, α) =
n

n−m
(1− α)b(m;n− 1, α)

for each m = 0, . . . , n− 1, and the payoff expression (5), we can further rewrite the revenue

from informed buyers as

n(1− α)

∫ 1

0

(
n−1∑
m=0

b(m;n− 1, α)Qm(vi, ε)vi − U(vi, ε)

)
f(vi)dvi,

which, by integration by parts and the envelope condition (8) together with U(0, ε) = 0,

becomes

n(1− α)

∫ 1

0

(
n−1∑
m=0

b(m;n− 1, α)Qm(vi, ε)

)
φ(vi)f(vi)dvi.

Using the binomial identity and symmetry again, we have the final formula for the revenue

from informed buyers

n−1∑
m=0

b(m;n, α)Ev(m)

[∑
j

qj(v(m))φ(vj)

]
.

The seller chooses the profile of probabilities q(v(m)) for all v(m) to maximize the sum of

the above expression and the total expected revenue from uninformed buyers, given by

n∑
m=1

b(m;n, α)

(
1− Ev(m)

[∑
j

qj(v(m))

])
π(tm).

Aside from the bidding constraints, the only other constraint is a feasibility condition

∑
j

qj(v(m)) ≤ 1

for all v(m).

The solution to the seller’s problem takes the form of a reserve price when at least one

buyer is uninformed, whereby the informed buyer who reports the highest value above the

reserve price is assigned the good and a randomly selected uninformed buyer is selected for a

take-it-or-leave-it offer when no informed buyer meets the reserve price. This is because for
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any other allocation rule, the seller can find a reserve price that weakly increases the revenue

while keeping the bidding condition satisfied. We can therefore represent the solution by

reserve prices rm, m = 0, . . . , n− 1, together with take-it-or-leave-it offers tm, m = 1, . . . , n.

For each m = 0, . . . , n− 1, we have

Qm(vi, ε) =

 F n−1−m(vi) if vi ≥ rm,

0 otherwise

The theorem follows immediately.

The significance of the above theorem is to reduce the construction of the equilibrium out-

come to solving a constrained optimization problem. The decision variables are 2n constants

- the n reserve prices {r0, . . . , rn−1} for informed buyers, and the n take-it-or-leave-it offers

{t1, . . . , tn} for the uninformed. We will refer to the solution to constrained optimization

problem as the “equilibrium auction.”

4 Equilibrium Auctions

The main difficulty in using Theorem 2 to characterize the equilibrium auctions is that there

is a continuum of bidding constraints (7), and a priori we do not know which are binding.

In standard mechanism design problems, the way to deal with a continuum of incentive

constraints is to replace them with local conditions. This appears to be unsuitable for our

problem here, because we naturally do not expect the bidding constraints to bind for all

values of an informed buyer. Below we attempt to make some progress on this issue of

bidding constraints by first studying two benchmarks.

4.1 Benchmarks

Imagine that the seller observes the realized number m of uninformed buyers, instead of

having to infer it from buyers’ reports. We maintain the assumption that the seller does not
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observe who are uninformed and who are informed. Let r > r∗ be such that

φ(r) = π(r∗).

This is uniquely defined because the virtual value is strictly increasing, and φ(1) = 1 >

π(r∗) > φ(r∗) = 0.

Proposition 1. Suppose that the seller observes the realized number m of uninformed

buyers. In the unique equilibrium, rm = r for each m = 1, . . . , n − 1, and r0 = tm = r∗ for

each m = 1, . . . , n.

Proof. When the seller observes the realized number m of uninformed buyers, the bidding

constraints (7) can be satisfied by withholding the good when the number of buyers who

keep silent exceeds m. Then, there is no incentive for an informed buyer to keep silent. The

proposition follows immediately from the unconstrained solution to maximizing the objective

function (6).

Proposition 1 provides a revenue upper-bound due to the absence of the bidding con-

straints. With at least one uninformed buyer, the seller has an outside option of making the

best take-it-or-leave-it offer r∗. The value of this outside option is π(r∗), independent of the

realized number m of uninformed buyers, which means that the seller’s best reserve price is

r, which equates the virtual value to π(r∗). When m = 0, however, the value of the seller’s

outside option is 0 by assumption, so the best reserve price is r∗, which equates the virtual

value to 0 as in the standard symmetric auction.

When the seller must commit to a mechanism that provides incentives for informed

buyers to reveal the number of m, the mechanism given in Proposition 1 is not part of any

equilibrium. The bidding constraints (7) are violated for informed buyers with value vi just

below r, as

U(vi, ε) =

∫ vi

r∗
(1− α)n−1F n−1(w)dw,

which is smaller than

U(vi, µ) =
n−1∑
m=0

b(m;n− 1, α)

m+ 1
F n−1−m(r)(vi − r∗).
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An informed buyer with value vi just below r wins the auction only when all other n − 1

buyers are informed and have values below vi, in which case the latter do not meet the

reserve price r so the former would get the good with probability one at the lowest price of

r∗ by pretending to be the only one who is uninformed.

Indeed, if the seller wishes to set different reserve prices for the auction among informed

buyers depending on whether or not there is the outside option of making a take-it-or-leave-it

offer to uninformed buyers, informed buyers must be kept in dark about which reserve price

will be used before they report to the seller. We next show that if instead informed buyers

know the reserve price, the seller is prevented from exploiting the higher outside option when

there is at least one uninformed buyer. As a result all reserve prices and all take-it-or-leave-it

offers have to be the same.

Proposition 2. Suppose that the seller is restricted to the same reserve price r in auctions.

In the unique equilibrium, r∗ < r < r and tm = r for each m = 1, . . . , n.

Proof. First, we claim that the bidding constraints (7) are satisfied if and only if r ≤ tm for

all m = 1, . . . , n. For the “only if” part, suppose that r > tm for some m. Then, the payoff

U(vi, ε) for an informed buyer with value vi just below r is 0, but the buyer gets a strictly

positive payoff by pretending to be uninformed, violating the bidding constraints. For the

“if” part, from (7) we have U(vi, ε) = U(vi, µ) for all vi ≤ r, and

dU(vi, ε)

dvi
=

n−1∑
m=0

b(m,n− 1;α)F n−1−m(vi)

>

n−1∑
m=0

b(m,n− 1;α)
F n−1−m(r)

m+ 1
≥ dU(vi, µ)

dvi

for all vi > r. Thus, the bidding constraints are satisfied.

Next, we argue that r > r∗. Suppose instead r ≤ r∗. If r < tm for all m = 1, . . . , n, we

can increase r marginally without affecting the bidding constraints. The effect of this on the

value of the objective (6) has the same sign as

−n(1− α)nφ(r)F n−1(r) +
n−1∑
m=1

b(m;n− 1, α) (−φ(r) + π(tm))F n−1−m(r).
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Since r ≤ r∗, the first term above is non-negative while the second term is strictly positive.

This contradicts the constrained optimality of the seller’s equilibrium mechanism. If r = tm

for some m = 1, . . . , n, we can increase r and all such tm by the same marginal amount,

keeping the bidding constraints satisfied. In addition to the above positive effect, there is a

further non-negative effect on the revenue due to the increase in tm, which is non-negative

because tm = r ≤ r∗. This leads to a contradiction again.

Now, we can show that tm = r for all m = 1, . . . , n. If tm > r for some m, the seller can

marginally decrease tm without affecting the bidding constraints. This however increases the

seller’s revenue because tm > r > r∗, contradicting the constrained optimality of the seller’s

equilibrium mechanism.

Finally, we show that tm = r < r for all m = 1, . . . , n. If instead tm = r ≥ r, the seller

can marginally decrease all tm and r by the same amount without affecting the bidding

constraints. The effect of the decrease in the reserve price r on the seller’s revenue (6) has

the same sign as

n(1− α)nφ(r)F n−1(r) +
n−1∑
m=1

b(m;n− 1, α) (φ(r)− π(r))F n−1−m(r),

which is strictly positive because r ≥ r implies that φ(r) > 0 and φ(r) > π(r). The effect of

the decrease in the take-it-or-leave-it offer r on (6) is

−
n∑

m=1

b(m;n, α)F n−m(r)
dπ(r)

dr
,

which is again strictly positive because r ≥ r. This contradicts the constrained optimality

of the seller’s equilibrium mechanism.

The single-reserve price auction characterized by Proposition 2 provides a revenue lower

bound for our equilibrium auction. The seller satisfies the bidding condition by setting all

reserve prices and all take-it-leave-it offers to a single number r between r∗ and r. Compared

to the auction characterized by Proposition 1, r is too high for the take-it-or-leave-it offers

to uninformed buyers and for the auction participated by all n buyers, while at the same

time too low for all the other auctions.
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4.2 Price dispersion

The auction characterized by Proposition 2 is not part of an equilibrium. Starting from any

common reserve prices and take-it-or-leave-it offers r, the seller could set a marginally lower

reserve price r0 for the auction when all buyers are informed. Since r > r∗ by Proposition

2, this would already increase the revenue from that auction while relaxing the bidding

constraints. Further, the seller could marginally lower all take-it-or-leave-it offers to increase

the revenue from uninformed buyers. This relaxes the bidding constraints, and allows the

seller to increase all reserve prices when there is at least one uninformed buyer. The argument

in the proof of Proposition 2 shows that r satisfies φ(r) < π(r), so the revenue in these

auctions are further increased. We next proposition uses the constrained optimality result

of Theorem 2 to establish necessary relations in reserve prices and take-it-or-leave-it offers

in equilibrium auctions.

Proposition 3. In any equilibrium, r0 < r∗ < tm < maxm′ rm′ for all m = 1, . . . , n, and

φ(rm) < π(tm) for all m = 1, . . . , n− 1.

Proof. If r0 > r∗, then by marginally decreasing it, the seller increases the revenue (when

all buyers are informed) while relaxing the bidding constraints, as U(vi, ε) is shifted up and

U(vi, µ) is unchanged. This is a contradiction to the constrained optimality of the equilibrium

mechanism characterized by Theorem 2.

If tm < r∗ for some m, then by marginally increasing it, the seller increases the revenue

from uninformed buyers (when there are m of them) while relaxing the bidding constraints,

as U(vi, ε) is unchanged and U(vi, µ) is shifted down, which contradicts the constrained

optimality of the equilibrium mechanism.

If φ(rm) > π(tm) for some m, then by marginally decreasing rm, the seller increases the

revenue because the effect of the decrease has the same sign as

b(m;n− 1, α) (φ(rm)− π(tm))F n−1−m(rm)f(rm),

which is positive. At the same time, the bidding constraints are relaxed, as U(vi, ε) is shifted

up and U(vi, µ) is shifted down, a contradiction to the constrained optimality.

Combining the above three claims, we have shown that r0 ≤ r∗ ≤ tm for all m = 1, . . . , n,
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and φ(rm) ≤ π(tm) for all m = 1, . . . , n − 1. If none of these inequalities is strict, we have

the mechanism given by Proposition 1, which violates the bidding constraints. Thus, at

least one of them is strict. If there is one that holds as an equality, the seller can make

the same marginal change as above (decrease r0 if r0 = r∗, increase tm if tm = r∗, and

decrease rm if φ(rm) = π(tm)) to strictly relax the bidding constraints with no effect on the

revenue. But this would allow the seller to use any strict inequality to make the opposite

marginal change to increase the revenue without violating the bidding constraints. This

contradicts the constrained optimality of the equilibrium mechanism. Thus, r0 < r∗ < tm

for all m = 1, . . . , n, and φ(rm) < π(tm) for all m = 1, . . . , n− 1.

Finally, if tm ≥ maxm′ rm′ for some m, then reducing tm marginally keeps the bidding

condition satisfied. This follows because the decrease does not affect U(vi, ε) for any vi, nor

does it affect U(vi, µ) for any vi < tm. At the same time, for all vi ≥ maxm′ rm′ we continue

to have U(vi, ε) > U(vi, µ), as the proof of Proposition 2 implies that

dU(vi, ε)

dvi
>
dU(vi, µ)

dvi

regardless the take-it-or-leave-it offers. However, we have shown that tm > r∗, so the seller’s

revenue is increased, a contradiction to the constrained optimality of the equilibrium mech-

anism.

An implication of Proposition 3 is dispersion in the reserve prices and the take-it-or-leave-

it offers when the seller faces uncertainty about whether buyers are informed about the selling

mechanism or not. When α = 0, we have the standard auction for the n informed buyers

with the reserve price r∗, while when α = 1, we have the take-it-or-leave-it price offer of r∗ to

one randomly selected from the n uninformed buyers. There is no price dispersion in either

extreme case, because the seller has the same zero value of keeping the good. However,

away from the two extremes, the informed and uninformed are treated differently, as the

former participate in auctions while the latter can only hope to get a take-or-leave-it offer.

This means that the seller can give the good to a randomly selected uninformed buyer after

failing to sell it through an auction among the informed buyers. Price dispersion emerges as

a result. In particular, there are at least two distinct reserve prices for the auctions, r0 < r∗
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when all buyers turn out to be informed, and the highest reserve price maxm′ rm′ > r∗, that

bracket all equilibrium take-it-or-leave-it offers.

The seller commits ex ante to reserve prices in auctions for informed buyers and take-

it-or-leave-it price offers for the uninformed that are depend on the ex post extent of the

knowledge about the commitments. This dependence turns out to have limited impact on

equilibrium price dispersion. The reason is that marginal adjustments in the reserve prices

or in the take-it-or-leave-it offers impact both the bidding constraints and the revenue, but

the ratio of the two is independent of the realized number m of uninformed buyers. Instead,

equilibrium dispersion in reserve prices and in take-it-or-leave-it offers is limited by the value

distribution.

Our next result gives a sufficient condition on the distribution that eliminates any degree

of dispersion in the take-it-or-leave-it price offers for the uninformed in equilibrium. Since

by assumption φ(v) is increasing, there is a unique t ∈ (r∗, r) such that

φ(t) = π(t).

Proposition 4 below shows that if π(p) is strictly concave for p ≥ r∗, then there exists

some t̂ ∈ (r∗, t) such that tm = t̂ for all m = 1, . . . , n. This is helpful in characterizing

the equilibrium auctions, because it implies that when the revenue function π is concave, a

continuum of bidding constraints can be reduced to a single one, at some v̂. Of course, the

choice of v̂ remains endogenous in any unobserved mechanism design problem. Nonetheless,

the result that the bidding constraints bind only at one value allows us to reduce the amount

of dispersion in equilibrium reserve prices for informed buyers.

Proposition 4. Suppose π(p) is strictly concave for p ≥ r∗. In any equilibrium, there

exist t̂ ∈ (r∗, t) such that tm = t̂ for all m = 1, . . . , n and a unique v̂ ∈ (t̂, r) such that

U(v̂, ε) = U(v̂, µ). Furthermore,

αφ(t̂)f(t̂) + (1− α)φ(r0)f(r0) = 0, (9)
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and if rm < v̂ < rm′ for m,m′ ≥ 1 then

(φ(rm′)− φ(rm))f(rm) + φ(r0)f(r0) = 0. (10)

Proof. First, suppose that tm > tm′ . Consider marginally decreasing tm and simultaneously

increasing tm′ such that U(vi, µ) for any vi just above tm stays unchanged, where

∂U(vi, µ)

∂tm
= − 1

m
b(m− 1;n− 1, α)F n−m(rm),

with a similar expression for ∂U(vi, µ)/∂tm′ . These marginal changes lower U(w, µ) for

w ∈ (tm′ , tm), and have no other effects for any value w ≤ tm′ or w ≥ tm. Further, U(w, ε)

remains unchanged. Thus, the bidding condition remains satisfied. To compute the effects

on the seller’s revenue R given by (6), note that

∂R

∂tm
= b(m;n, α)F n−m(rm)

dπ(tm)

dt
,

with a similar expression for ∂R/∂tm′ . Since the ratio of ∂R/∂tm to ∂U(vi, µ)/∂tm is the

same as that of ∂R/∂tm′ to ∂U(vi, µ)/∂tm′ , the change in the seller’s revenue has the same

sign as

−dπ(tm)

dt
+
dπ(tm′)

dt
.

The above is positive because π(p) is strictly concave for p ≥ r∗. This contradicts the

constrained optimality of the equilibrium mechanism characterized by Theorem 2. It follows

immediately that there exists some t̂ such that tm = t̂ for all m = 1, . . . , n. By Proposition 3,

since tm > r∗ for all m, we have t̂ > r∗; since φ(rm) < π(t̂) for all m ≥ 1 and t̂ < maxm′ rm′ ,

and since φ(v) ≥ π(v) for all v ≥ t by the definition of t, we also have t̂ < t.

Next, since U(vi, ε) is strictly convex for all v ≥ r0, the bidding constraints can bind only

at a single value. It follows that there is a unique value v̂ such that U(v̂, ε) = U(v̂, µ). Since

U(vi, µ) = 0 for all vi ≤ t̂, we have v̂ > t̂; and since φ(rm) < π(t̂) for all m by Proposition

3, implying that rm < r, and since dU(vi, ε)/dvi > dU(vi, µ) for all vi ≥ maxm′ rm′ from the

proof of Proposition 2, we also have v̂ < r.
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Since r0 < r∗ < t̂ < v̂, a marginal increase in r0 reduces U(v̂, ε) without changing

dU(v̂, ε)/dvi or U(·, µ), with

∂R/∂r0
∂U(v̂, ε)/∂r0

=
−n(1− α)n−1φ(r0)F

n−1(r0)f(r0)

−(1− α)n−1F n−1(r0)

= n(1− α)φ(r0)f(r0).

From the first part of this proof, a marginal increase in tm for any m = 1, . . . , n from t̂

reduces U(v̂, µ) without changing dU(v̂, µ)/dvi or U(·, ε), with

∂R/∂tm
∂U(v̂, µ)/∂tm

= nαφ(t̂)f(t̂).

Thus, a necessary condition for equilibrium is (9).

Finally, suppose that rm < v̂ < rm′ for m,m′ = 1, . . . , n− 1. Consider a marginal change

in rm. At the same time, marginally change rm′ in the opposite direction of rm so that the

function U(vi, µ) stays the same, and marginally change r0 in the opposite direction of rm

so that the value of U(v̂, ε) stays the same. By construction, the bidding constraints remain

binding at the same single value v̂. A necessary condition for equilibrium is then

1 =
∂R/∂rm′

∂U(v̂, µ)/∂rm′

∂U(v̂, µ)/∂rm
∂R/∂rm

+
∂R/∂r0

∂U(v̂, ε)/∂r0

∂U(v̂, ε)/∂rm
∂R/∂rm

.

We have
∂R

∂rm
= b(m;n, α)(n−m)F n−1−m(rm)f(rm)(−φ(rm) + π(p̂)),

and
∂U(v̂, µ)

∂rm
=
n−m
m

b(m− 1;n− 1, α)F n−1−m(rm)f(rm)(v̂ − t̂),

with similar expressions for m′, while

∂U(v̂, ε)

∂rm
= −b(m;n− 1, α)F n−1−m(rn),

because rm < v̂ and ∂U(v̂, ε)/∂rm′ = 0 because rm′ > v̂. Using the above expressions, we

27



can rewrite the necessary equilibrium condition as

1 =
−φ(rm′) + π(t̂)

−φ(rm) + π(t̂)
+

f(r0)(−φ(r0))

f(rm)(−φ(rm) + π(t̂))
,

which reduces to (10).

An immediate implication of (10) in Proposition 4 is that, if rm, rm′ > v̂ for m,m′ =

1, . . . , n−1 then rm = rm′ . Therefore, high reserve prices—those that may bind for informed

buyers with sufficiently high values who strictly prefer participating in bidding —should not

be discriminatory depending on the realized number of informed buyers, if take-it-or-leave-it

offers are the same. On the other hand, we do not have a similar result for low reserve

prices that bind for informed buyers with low values. This is because changes to such low

reserve prices can affect the equilibrium payoff of informed buyers with a critical value who

are just indifferent between participating in bidding and keeping silent. Low reserve prices

can have allow for some dispersion. However, as we have already mentioned, such dispersion

is entirely pinned down by the value distribution function F . In particular, if F (v) is weakly

decreasing, then (10) implies that all low reserve prices are the same as well.12

The two necessary conditions (9) and (10) in Proposition 4 are independent of the total

number of buyers n. Thus, how the seller sets the reserve prices and the take-it-or-leave-it

offers in equilibrium is not sensitive to how many potential buyers there are, at least when

π is concave. Combining (9) and (10), we find that the dispersion among the reserve prices

in auctions for informed buyers disappears, as all reserve prices (other than r0) converge

to some critical value v̂, when the probability α that a given buyer is uninformed goes to

zero. Further, when α is arbitrarily close to 0, from (9) we have that r0 converges to r∗.

This makes sense, because when each buyer is almost surely informed, the seller’s revenue is

almost completely determined by the auction corresponding to m = 0, so the reserve price

r0 in this auction needs to be arbitrarily close to the one used in the standard auction.

12Thus, for the uniform value distribution, there are at most four reserve prices: r0, v̂, a reserve price
lower than v̂ and another one higher than v̂.
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4.3 Equilibrium welfare

The presence of uninformed buyers makes the seller worse off. We have modeled uninformed

buyers as agents who do not observe the seller’s commitments but who nonetheless have

rational expectations regarding the seller’s mechanism that prevents the seller from exploiting

their lack of knowledge. This effectively makes it harder for the seller to use standard

devices to elicit information about their values from those buyers. Theorem 1 shows that in

equilibrium it is as if the seller has no commitment with respect to uninformed buyers. A

simple revealed-preference type of argument then shows that the seller is weakly worse off in

equilibrium whenever buyers might be uninformed compared to the standard environment of

when all buyers are informed of the seller’s mechanism. Further, since the seller could have

used auctions instead of making take-it-or-leave-it offers to uninformed buyers, the seller is

strictly worse off in equilibrium than in the standard setting.

If there are no informed buyers, uninformed buyers have an equal chance of receiving a

take-it-or-leave-it offer equal to r∗. The resulting payoff, as a function of the value vi, is

U∗(vi, µ) =
1

n
max{vi − r∗, 0}.

We now compare the above to the equilibrium payoff function of the uninformed, U(vi, µ)

as given in (7).

Since tm > r∗ for all m = 1, . . . , n by Proposition 3, the uninformed buyer with a value vi

just above r∗ is worse off in equilibrium than when there are no informed buyers around. This

is due to an “incentive effect” because the seller in equilibrium raises all take-it-or-leave-it

offers to the uninformed above r∗ in order to discourage informed buyers from pretending to

uninformed. For uninformed buyers with high values that clear all take-it-or-leave-it offers,

however, the “outside option effect” that the seller can give the good to an uninformed buyer

when no informed buyer wins the auction instead of having to keep it, allows the seller to

raise at least some of the reserve prices above r∗. This potentially reduces the probability

that the good is sold to informed buyers and thus improves the chance that it goes to a given

uninformed buyer.

When the total number of buyers n is sufficiently large, the outside option effect can

29



be shown to be negative in aggregate on the payoff of the uninformed. From Proposition

3, we have rm < r for all m = 1, . . . , n − 1 because φ(rm) < π(tm) and tm > r∗. Thus,

the equilibrium payoff of the uninformed buyer with the highest value of 1 is bounded from

above by

U(1, µ) <
n−1∑
m=0

b(m;n− 1, α)

m+ 1
F n−1−m(r)(1− r∗)

=
1

nα
((α + (1− α)F (r))n − ((1− α)F (r))n) (1− r∗).

The above is less than U∗(1, µ) when n is sufficiently large. What happens is that when

n is large, averaging across the realized number of uninformed buyers m, the probability

that no informed buyer meets the reserve price rm is sufficiently small so that the reduced

competition in the lottery for the uninformed from n to m becomes relatively unimportant.

Since U∗(vi, µ) is linear for values above r∗ and U(vi, µ) is convex, an uninformed buyer with

any value is worse off in equilibrium than when there are no informed buyers.

When all n buyers are informed, they face the standard optimal reserve price of r∗, with

the payoff function

U∗(vi, ε) =

∫ vi

min{vi,r∗}
F n−1(w)dw.

We now compare the above to the equilibrium payoff function of the informed, U(vi, ε) as

given in (7).

Since r0 < r∗ by Proposition 3, the informed buyer with a value vi between r0 and r∗

is better off in equilibrium than when there are no uninformed buyers around. Thus, the

same incentive effect that makes uninformed buyers worse off in the presence of informed

buyers now motivates the seller to lower the reserve price r0 below r∗, making informed

buyers with low values better off in the presence of uninformed buyers. For informed buyers

with sufficiently high values, again their payoff is impacted by the outside option effect in

opposing directions. So long as some buyers turn out to be uninformed, i.e. m ≥ 1, the

equilibrium reserve price rm in the auction for informed buyers is higher than r∗, but at the

same time an informed buyer competes against n − 1 −m instead of n − 1 other informed

buyers.
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In contrast to our discussion of the welfare of the uninformed, the net effect is positive

on the payoff of the informed buyers with high values when the total number of buyers n is

sufficiently large. Since rm < r for all m = 1, . . . , n− 1, we have

U(1, ε) >
n−1∑
m=0

b(m;n− 1, α)

∫ 1

r

F n−1−m(w)dw

=

∫ 1

r

((α + (1− α)F (w))n−1dw.

The above is greater than U∗(1, ε) when n is sufficiently large.13 What happens is that

when n is large, averaging across the realized number of uninformed buyers m, the reduced

competition in the auctions for informed buyers from n to n −m becomes relatively more

important than the higher reserve prices they face. The comparison with the standard

auction for informed buyers with intermediate values remains ambiguous.

4.4 An example

Suppose that n = 2 and that the revenue function π(p) is strictly concave for p > r∗. By

Proposition 4, there is a single equilibrium take-it-or-leave-it offer t̂ ∈ (r∗, t). It follows that

the single value v̂ at which the bidding constraints bind coincides with the only other reserve

price r1 above r∗. The choice variables for the constrained optimization problem given in

Theorem 2 are then t̂, r0 and r1, and the continuum of bidding constraint reduces to a single

one, given by

(1− α)

∫ r1

r0

F (w)dw ≥
(
α

1

2
+ (1− α)F (r1)

)
(r1 − t̂). (11)

Let λ be the Lagrange multiplier for the above constraint. We can use λ to rewrite the

first order necessary conditions in Proposition 4 for an equilibrium mechanism (t̂, r0, r1),

13Using integration by parts, for n large enough, it suffices to show that

(1− α)

∫ 1

r

((α+ (1− α)F (w))n−2f(w)wdw <

∫ 1

r∗
Fn−2(w)f(w)wdw.

The above is true for large enough n by using another integration by parts.
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equations (9) and (10), as

2αφ(t̂)f(t̂) = λ,

2(1− α)φ(r0)f(r0) = −λ,

2(1− α)α(π(t̂)− φ(r1))f(r1) = λ

(
α

1

2
+ (1− α)(r1 − t̂)f(r1)

)
, (12)

together with (11) holding with equality.

This example illustrates that the equilibrium mechanism is discontinuous at α = 0 and

α = 1. In the two extremes, the reserve price for auctions and the price for take-it-or-leave-it

offers are both r∗. In the limits, however, only the price relevant to the seller revenue - r0 in

the case of α going to 0 and t̂ in the case of α going to 1 - converges to r∗, with the other

prices pinned down by the incentive effect and the outside option effect that do not exist in

the extremes.

For α arbitrarily close to 0, the first order conditions with respect to t̂ and r0 (the first

two equations in 12) together imply that r0 is close to r∗. At the same time, the first order

conditions with respect to t̂ and r1 (the first and the last equations in 12) imply that if t̂

converges to r∗ as well, then r1 converges to r. This violates the constraint (11). Thus, for

α converging to 0, t̂ is bounded away from r∗ and r1 is in turn bounded away from t̂.

For α arbitrarily close to 1, the first order conditions with respect to t̂ and r0 imply that

t̂ is close to r∗, which implies r1 is close to r∗ as well from the binding constraint (11). Then,

the first order conditions with respect to r0 and r1 (the last two equations in 12) imply that

the limit of r0 satisfies

−1

2
φ(r0)f(r0) = π(r∗)f(r∗).

Thus, for α converging to 0, r0 is bounded away from r∗.

This example can also be used to make the welfare comparisons for the uninformed and

informed buyers away from the case of a large number of buyers. For the uninformed buyers,

we can show when α is close to 0, in contrast to what happens when n is large, those with

high values can be better off in equilibrium than in the absence of informed buyers.14 To see

14Of course, when α is close 1, the equilibrium payoff function U(vi, µ) for the uninformed becomes close
to U∗(vi, µ).
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this, using the binding constraint (11) and integration by parts, we have

U(1, µ) =

(
α

1

2
+ (1− α)F (r1)

)
(r1 − t̂) +

(
α

1

2
+ (1− α)F (r1)

)
(1− r1)

= (1− α)

(
F (r0)(1− r0) +

∫ r1

r0

(1− w)f(w)dw

)
+ α

1

2
(1− r1).

We already know that r0 converges from below to r∗ when α is arbitrarily close to 0, while r1

is bounded below away from r∗. Therefore, for any value distribution with the property that

F (r∗) ≥ 1
2
, including the uniform distribution, the above is strictly greater than U∗(1, µ).

Further, since r0 converges to r∗, the uninformed buyer is better off in equilibrium for almost

all values.

For the informed buyers, when α is close to 1, consistent with what happens when n

is large, those with high values are always better off in equilibrium than in the absence of

uninformed buyers. This is simply because r1 converges to r∗ when α goes to 1.15 Since r0

is bounded away from r∗, the informed buyer is better off in equilibrium for all values.

5 Concluding Remarks

In this paper we have considered a traditional mechanism design problem and modified it

by assuming some buyers do not know the mechanism the seller is using. Our main result is

that to induce the informed to reveal themselves, the seller has to hide certain features of the

mechanism from them. In this simple problem this results in a simple explanation for the

fact that sellers hide their reserve prices in auctions - something that is observed frequently

in practise. At the point where informed buyers report their values the reserve price is a

random variable.

We have taken a number of shortcuts in our model - in particular, we assume that

messages lead to a single offer. For the auction among the informed buyers this is without

loss, since the winner of the auction always wants to accept the offer when they win the

auction. For the uninformed this assumption is unrealistic. Once the seller learns who the

15In fact, when the value distribution is uniform, informed buyers with high values are always better off
regardless of the value of α. Further, it can be shown that U(r1, ε) < U∗(r1, ε) so that the informed buyer
with intermediate values are worse off than when all buyers are informed.
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uninformed buyers are, the seller is likely to approach them in sequence with offers. A

general approach to unobserved mechanisms is to model the output of a mechanism as an

“algorithm,” which is a sequence of take-it-or-leave-it offers and the identities of the buyers

to whom the offers are made. As in the present paper, the seller first makes a commitment

in terms of how a particular algorithm is chosen in response to the messages sent by the

buyers, who however may not observe it. It is straightforward to generalize the analysis in

the present paper to the case in which algorithms are restricted to at most one take-it-or-

leave-it offer for each buyer. The main insights are intact - an uninformed buyer receives an

expected offer independent of the buyer’s value, while informed buyers face a secret reserve

price when they bid in an auction. We leave the characterization of unrestricted equilibrium

algorithms to future research.

Perhaps a more restrictive assumption we use is that buyers are either fully informed

or fully uninformed. A more reasonable assumption might be that buyers have partial

information about commitments. For example, we could assume that some buyers may

only be able to understand commitments to actions based on their own messages, but not

commitments that depend on the messages of others. If all buyers have this type of partial

information, then there is an equilibrium in which the seller implements the optimal auction

of Myerson (1981) through a first-price sealed bid auction. This corresponds to the main

result of Akbarpour and Li (2018), who frame the issue of partial observability in terms

of limited commitment by the seller. When buyers have differential information about the

seller’s commitments - for example, if buyers either fully observe the seller’s commitment or

only observe the part based on their own message - we nonetheless believe that our basic

insight could be extended to this kind of assumption. Yet we are reluctant to pursue without

a better model of what buyers can and cannot understand.

Finally, our model is too stylized to make strong claims about what it predicts. However,

it does have a fairly simple prediction. When the seller attempts to sell to an uninformed

buyer, the seller does so at a fixed price, and this attempted sale will often fail. When the

good is sold to an informed buyer the transaction is much more likely to succeed but prices

will vary with realized values. The probability with which these two events occur depends on

the probability with which buyers are informed. For this reason our model predicts that price
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variability will be larger in markets where buyers are likely to be informed. Conversely, prices

will be stable and transaction variability much larger in markets where buyers are unlikely

to be informed. This suggests a potential method for measuring the degree of understanding

of mechanisms in auction markets.
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