
• n colleges in a set C, m applicants in a set A,
where m is much larger than n.

• each college ci ∈ C has a capacity qi - the
maximum number of students it will admit

• each college ci has a strict order ≻i over ap-
plicants, j ≻i j

′ means college i would strictly
prefer to admit applicant j

• eqivalently i ≻j i
′ means that applicant j would

strictly prefer to be admitted to college i

• write ∅ ≻i j when college i just doesn’t want
to admit applicant i

• let B be a subset of applicants containing less
than qi elements

• college preferences are responsive if

B ∪ {j} ≻ B ∪ (j′)

if and only if j ≻ j′

• means that colleges preferences over students
are independent of any other students they have
admitted

0-0

• a matching is a correspondence µ : C ∪ A →
2C∪A satisfying

1. ∀i ∈ C, |µ (i) | ≤ qi;

2. ∀j ∈ A, either µ (j) ∈ C or µ (j) = ∅

3. j ∈ µ (i) =⇒ µ (j) = i

• a matching is stable if

1. for each i ∈ C, µ (i) ≻i µ (i)−{j} for each
j ∈ µ (i);

2. µ (j) ≻j ∅;

3. there is no pair {i, j} such that i ≻j µ (j)
and either |µ (i) | < qi and µ (i) ∪ {j} ≻
µ (i) or there is a j′ such that µ (i)+{j}−
{j′} ≻ µ (i)

• finite many to one matching problem with re-
sponsive preferences (note that part of this for-
mulation is the assumption that applicants don’t
care who they are matched with, only where
they are matched).

• Theorem: a stable matching for a many to
one matching problem with responsive prefer-
ences is pareto optimal provided preferences
are strict (i.e., i ≻ j implies ! (j ≻ i)

0-1

• PROOF: suppose not. Then there is an alter-
native matching µ′ which makes some appli-
cant or college better off without hurting any-
one else

• if that is true, then either µ′ (i) ≻ µ (i) for
some college i or µ′ (j) ≻ µ (j) for some appli-
cant j. All we need to prove is either one of
these statements is true, some college or appli-
cant must be made strictly worse off.

• the second possibility is easiest, because pref-
erences are strict, applicant j must be matched
to a different college in µ′ than in µ and it must
be one that he or she strictly prefers. Since µ

is stable, whatever college i j is matched with
under µ′ (i.e., µ′ (j)) must prefer (strictly) each
of the applicants matched with it under µ to
j (the set of applicants matched to it under
µ (formallyµ (µ′ (j)) ≻µ′(j) µ (µ′ (j)) + {j} −
{j′} ∀j′) otherwise the pair would be a block-
ing pair.

• so adding j to µ (µ′ (j)) either by displacing an-
other applicant or forcing i to take an applicant
he doesn’t want makes college µ′ (j) worse off.
If µ′ (j) is worse off than it was under µ then

0-2

that is the end of the story, the new matching
µ′ doesn’t pareto dominate µ because it makes
µ′ (j) worse off.

• however, it could be that µ′ (j) is made better
off in the new matching anyway because he is
compensated with a bunch of different appli-
cants that he likes

• If that is true he must be matched to at least
one applicant who he strictly prefers to some
applicant in µ (µ′ (j)). This new applicant must
be worse off than he is under µ otherwise µ′ (j)
and this new applicant would be a blocking
pair. Hence if both j and µ′ (j) are better off
in the new matching, then at least one of the
applicants in µ′ (µ′ (j)) is worse off.

• Proof is similar if it is the college that is ini-
tially better off END PROOF.

• with strict preferences, a lot of matchings are
pareto optimal, and most of them aren’t stable

• e.g College A, College B each with one slot,
applicant 1, applicant 2.

• both colleges prefer 1 to 2, both applicants
strictly prefer A to B, µ (A) = 2.

0-3

• this matching isn’t stable because A wants 1
and 1 wants A, but moving 1 from B to A
makes B worse off so it is pareto optimal.

• Deferred Acceptance Algorithm

• every finite many to one matching problem
with responsive preferences has a stable match-
ing

• a stable matching can be computed algorith-
mically in a manner that is ’computationally
efficient’ - meaning that you can find a sta-
ble matching more quickly with the algorithm
than you can by enumerating all the possibili-
ties then checking them for stability.

• the algorithm is called the deferred acceptance
algorithm.

0-4

T T TF T

Applicant

Colleges F

a b
c d e f

Rejected
Mark College
as False

Try Again

College

Application from j

Appliant Stack

a
b
.
.
.
.
.
.
.
z

reject if j is worse than z

j is better than z, place in stack

pop z out of the stack and reject

0-5

• Init - Applicant: create a register for each ap-
plicant containing a state value for each col-
lege. Set the state for each college to true

• an applicant has an input function that adjusts
the states in the register, and an output func-
tion that sends a message to a college

• Init - College: create a stack to contain the
names of admitted applicants, this stack is ini-
tially empty

• a college has an input function that processes
an application message. If it wants to accept
the applicant it puts the name in its stack. If it
wants to reject an applicant it sends the appli-
cants name to the output function, that sends
a rejection message to that applicant.

• START (A0) - each applicant receives the start
message picks its favorite college, the output
function sends the an application to that col-
lege, then waits for another message.

• APPLICANT RECIEVES A REJECTION (A1):
if it receives a rejection from college i, it marks
the state for college i as false, picks its favorite
college from the remaining open colleges, sends

0-6

that college an application, then waits for an-
other message;

• COLLEGE RECEIVES AN APPLICATION
(C1): if an application is received from appli-
cant j, then add j to the stack if j is accept-
able, and there are fewer than qi applicants in
the stack, then wait for another application;
if there are already qi applicants in the stack,
check whether j is preferred to an existing ap-
plicant. If he is, put j in the stack, remove
the less desired applicant, send him a rejection
message and wait for more applications. If all
applicants in the stack are better that j send
a rejection to applicant j.

• the algorithm ends when there are no more
messages

• the state of the applicants registers after all
messages are sent defines the matching

• an applicant stops sending messages when he/she
has been rejected by every college, or when
he/she receives no rejection messages

• if applicant j stops and there are open colleges
in his register, his match is his favorite open
college - µ∗ (j)

0-7

• college i stops when it receives no new appli-
cations. Its match is equal to the qi or fewer
applicants Ai in its stack - µ∗ (i) = Ai.

• notice that each applicant sends at most n mes-
sages, there are m applicants, meaning that at
most nm messages will be sent to colleges

• each message received by a college causes it to
do a finite number of calculations: compare j

with z, reorder the elements in a list, send a
message

• if there are K operations needed to process a
message, then there are at most Kmn opera-
tions needed to compute a matching (each ap-
plicant will send at most one message, leading
to K calculations, there are n applicants)

• to exhaustively check each matching for sta-
bility when the number of colleges and student
is the same and each student is matched to
one college requires at most K2N computa-
tions, where K2is the number of computations
needed to check whether a particular matching
is stable and N is the total number of match-
ings (in the case where all applicants must be
matched with some college and n = m, N = n!

0-8

since applicant 1 can be matched with n pos-
sible schools, once he is done, applicant 2 can
be matched wtih n−1 possible schools, and so
on.

• heuristically this means that when the num-
ber of colleges and applicants is large, the de-
ferred acceptance algorithm will normally de-
fine a matching with fewer calculations that
brute force checking

• Theorem 1: The matching µ∗ defined by the
deferred acceptance algorithm is stable.

• Proof: Suppose to the contrary that µ∗ isn’t
stable. If there is a blocking pair, then some
applicant j has a college i′ that she would pre-
fer to µ∗ (j), while i′ prefers j to at least one
of the applicants in µ∗ (i′). Since j always ap-
plies to the best open school by (A1), college
i′must have rejected the application from j at
some point. By (C1) college i′ only rejects j

if its worst applicant is better than j. Again
using (C1) any subsequent applicant accepted
by j will be preferred to its worst applicant,
which implies that each applicant in µ (i′) is
preferred to j, a contradition.

0-9

• implicitly. a matching is an algorithm that
takes as inputs, a set of preferences {≻j ,≻i}i=1,m;j=1,n
and produces a stable matching

• so we could write the matching as µ (j, {≻j ,≻−j})
following the convention that for any applicant
j, the algorithm produces a stable matching
using preferences {≻j ,≻−j} (here ≻−j means
the preferences of all the other applicants and
colleges)

• Theorem 2: Let µ be the matching supported
by the deferred acceptance algorithm. For any
applicant j and any preference≻−j ,

µ (j, {≻j ,≻−j}) ≻j µ
(

j,
{

≻′

j ,≻−j

})

provided the two assignments are different.

• Proof: see Roth and Sotomayer

• there are typically many stable matchings. For
some applicant j, say i is attainable by j if
there is some stable matching in which j is
matched with i.

• Lemma 2: suppose that at some point dur-
ing the operation of the deferred acceptance

0-10

algorithm, j sends an application to an attain-
able partner i. Then i will either prefer j to
some applicant i has already accepted, or will
be willing to accept j into an empty slot.

• Proof: Since i and j are matched in some
stable allocation, j must be acceptable to i.
So if fewer than qi applications have been ac-
cepted, then i will tentatively accept j. Sup-
pose the assertion of the theory is true after
k applications have been submitted and that
i has already accepted qi applicants. Suppose
that, contrary to the assertion in the lemma, j
is no longer acceptable to attainable college i

after the k + 1st application has been submit-
ted. Then i must prefer all qi of his existing
applications to j. By the induction hypothesis
and the properties of the deferred acceptance
algorithm, any applicant accepted already by
i after k + 1 applicants have been submitted,
prefers i to any college that is attainable for
them. Since i is attainable for j, consider some
matching µ′ in which j is accepted by i. Since
there are qi applicants who prefer i to any col-
lege that is attainable to them, they prefer i to
their match in µ′, and i prefers each of these
applicants to j. So there must be at least one

0-11

blocking pair for µ′.

• Corollary: In the (applicant proposing ver-
sion of the) deferred acceptance algorithm, each
applicant weakly prefers his match to the match
he receives in any other stable allocation.

• Proof: if he prefers the school in the other ap-
plication, then he should just apply, by lemma
2 he would be accepted.

• Corollary: the allocation produced by the
daa is in the core. Since any alternative allo-
cation is pairwise stable, this follows from the
last Corollary.

• Example

a b c d

SFU 1,3 2,2 3,2 4,3
UBC 2,1 1,1 3,1 4,1
UT 4,2 2,3 1,3 3.2

• SFu prefers a to b to c to d, student a prefers
UBC to UT to SFU

a b c d

SFU 1,3 2,2 3,2 4,3
UBC 2,1∗ 1,1∗ 3,1∗ 4,1∗

UT 4,2 2,3 1,3 3,2

0-12

a b c d

SFU 1,3 2,2 3,2 4,3
UBC 2,1∗ 1,1∗ 3,1∗ 4,1∗

UT 4,2 2,3 1,3 3,2

a b c d

SFU 1,3 2,2 3,2∗ 4,3
UBC 2,1∗ 1,1∗ 3,1∗ 4,1∗

UT 4,2∗ 2,3 1,3 3,2∗

a b c d

SFU 1,3 2,2 3,2∗ 4,3
UBC 2,1∗ 1,1∗ 3,1∗ 4,1∗

UT 4,2∗ 2,3 1,3 3,2∗

a b c d

SFU 1,3∗ 2,2 3,2∗ 4,3
UBC 2,1∗ 1,1∗ 3,1∗ 4,1∗

UT 4,2∗ 2,3 1,3 3,2∗

a b c d

SFU 1,3∗ 2,2 3,2∗ 4,3∗

UBC 2,1∗ 1,1∗ 3,1∗ 4,1∗

UT 4,2∗ 2,3 1,3∗ 3,2∗

0-13

• Indifference - schools may not care what stu-
dents they admit. As there is excess demand
they will have a lottery which determines pref-
erences. Then this outcome is not pareto opti-
mal because a and c can trade places.

• top trading cycle

• Interviewing

• n schools, m applicants, k interview slots

• many to many matching problem with addi-
tional constraints imposed by interviews

• a matching is a correspondence µ : C ∪ A →
2C∪A satisfying

1. ∀i ∈ C, |µ (i) | ≤ k;

2. ∀j ∈ A, |µ(j)| ≤ k;

3. ∀j ∈ A, either µ (j) ⊂ C or µ (j) = ∅

4. ∀i ∈ C, either µ(i) ⊂ A or µ(i) = ∅

5. j ∈ µ (i) ⇐⇒ i ∈ µ (j)

• a matching is stable if

1. for each i ∈ C, µ (i) ≻i µ (i)−{j} for each
j ∈ µ (i);

0-14

2. for each j ∈ A, µ (j) ≻j µ (j) − {i} for
each i ∈ µ (j);

3. there is no pair {i, j} such that µ(j) +
{i} ≻j µ (j) while |µ(j)| < k or µ(k) +
{i}−{i′} for some i′ in µ(j); while at the
same time |µ (i) | < k and µ (i) ∪ {j} ≻
µ (i) or there is a j′ such that µ (i)+{j}−
{j′} ≻ µ (i).

• the deferred acceptance algorith needs only a
minor modification

• for colleges the set up is the same as in the
original case

• for applicants, they begin with an array of truth
values as before, one element for each college,
each initialized to true. They also have a reg-
ister consisting of exactly k elements

• START (A0) - each applicant receives the start
message picks his or her k favorite colleges,
places each of them in the register, then sends
an application to each of the colleges in the
register and then waits for another message.

• APPLICANT RECIEVES A REJECTION (A1):
if it receives a rejection from college i, it marks

0-15

the state for college i as false, and removes col-
lege i from its register. He or she then picks
their favorite college from the group of colleges
that still have value true, sends that college an
application, then waits for another message;

• COLLEGE RECEIVES AN APPLICATION
(C1): if an application is received from appli-
cant j, then add j to the register if j is accept-
able, and there are fewer than k applicants in
the register, then wait for another application;
if there are already k applicants in the regis-
ter, check whether j is preferred to one of the
applicants who is already there. If he is, put j

in the stack, remove the less desired applicant,
send him a rejection message and wait for more
applications. If all applicants in the stack are
better that j send a rejection to applicant j.

• exactly as in the other mechanism, an appli-
cant can’t send more than n messages, a col-
lege can’t receive more than m messages, so
the process has to stop in finite time.

• the matching is given by the state of each ap-
plicant and school’s register

• Theorem: if both applicants and schools have

0-16

responsive strict preferences, the matching µ∗

generated by the deferred acceptance algorithm
as decribed above is pairwise stable.

• Proof: the proof is the same as in the many
to one case. To make things slightly simpler,
we’ll assume that |µ∗ (t) | = k for all t = i, j

. Suppose not. Then there is a blocking pair
consisting of some college i and some appli-
cant j, i.e. there is some applicant j′ such that
µ∗ (i)− {j′}+ {j} ≻ µ∗ (i) and some college i′

such that µ∗ (j)− {i′}+ {i} ≻ µ∗ (j).

• since applicants apply in order of their prefer-
ence to colleges and j prefers i to some school
that he was matched with, j must have applied
to i at some point and been rejected. Since i

and j are a blocking pair, j must be accept-
able to i, so i must have had applications from
applicants that it preferred to j. Since all ap-
plicants that i accepted subsequently are pre-
ferred to applicants that are preferred to j, j
must also be worse than every applicant in-
terviewed by i in the matching µ∗, which is a
contradiction.End Proof:

• Now we have a second problem - we have a

0-17

matching, but how do we know we can feasibly
schedule interviews

• another algorithm - the reason the matching
is constrained to contain exactly k elements is
that there are exactly k interview slots - for
example k consecutive half hour time slots.

• given a matching µ, a schedule is a mapping
s : C × A → K, where K is the set of time
slots

• a schedule is feasible for µ if

• s (i, j) 6= s (i, j′) for each j ∈ µ (i) and j′ ∈
µ (i)

• s (i, j) 6= s (i′, j) for each i′ ∈ µ (j) and i ∈
µ (j).

• Theorem: There is a feasible schedule for
each a matching µ.

• This follows from something called Vizing’s The-
orem

• a graph is a finite collection of vertices V and
a collection of edges E that connect the ver-
tices. The degree of a vertex is the number of

0-18

edges connected to that vertex. The degree of
a graph △ is the maximum number of edges
connected to any vertex. Edges are adjacent

when they connect to the same vertex.

• A graph is bipartite when the set of vertices
V can be divided into two subsets U and V

in such a way that every edge connected to a
vertex in U is also connected to a vertex in V

and conversely.

• Every many to many matching can be repre-
sented as a bipartite graph.

• C is a collection of colors. A graph coloring c

is a mapping from E → C (literally each edge
is colored)

• Vizings Theorem: every bipartite graph of
degree △ can be colored in such a way that no
two adjacent edges have the same color, and
such that the range of the coloring contains
only △ distinct colors.

0-19

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

v6

U Vedge

UBC

SFU

UT

UA

UC

a

b

c

d

e

f

Colleges Applicantsinterview

0-20

UBC

SFU

UT

UA

UC

a

b

c

d

e

f

Colleges Applicantsinterview

• in the diagrams above, there are at most three
edges emanating from any vertex, i.e., three
interviews. So label the interview slots {1, 2, 3}
and match this with the set of colors {Red,
Green,Blue}. The theorem says that edges can
be colored either red green or blue in such a
way that no two adjacent edges have the same
color,

• To see the analogy, just think of each vertex as
either a college or an applicant, and each edge
a match between a college and applicant. The
colors are the interview slots. So the theorem
says that we can assign the k interview slots to

0-21

college applicant pairs in such a way that for
every college, no pair of applicants that it is
matched with is given the same interview time,
and for each applicant, the applicant never has
interviews scheduled with two colleges at the
same time.

• Proof of Vizings Theorem for interviews
(a special case): You can use the pictures
above to follow the logic. Suppose we select an
arbitrary subset E of the edges in this graph.
If |E| < k we can trivially assign each edge
to a different interview slot. So lets proceed
inductively and suppose that for any subset
E containing t edges, we can assign interview
times to each of those edges so that no two
adjacent edges have the same interview time.
This means that no college interviews two stu-
dents at the same time, and no student has
two or more interviews scheduled at the same
time.

• the next step is to take a collection of edges
E such that |E| = t + 1. By the induction
hypothesis, if we were to choose any edge in E

arbitrarily and take it out, we would be able
to devise a feasible interview schedule for the

0-22

remaining edges. Lets do that, so that we have
a feasible interview schedule for everyone but
the pair consisting of college ui and applicant
vj who are connected by the edge e′ that we
took out of E.

• Since no applicant can have more than k matches,
the number of interviews the applicant vj has
left after we take out e′ is at most k−1 - mean-
ing that there is an interview slot that j hasn’t
yet used, lets call it sj . We might try to use
the slot sj to schedule an interview for vj with
college ui. The complication, of course, is that
college ui might be using the slot sj already
in the interview schedule we created for the
other slots. If ui isn’t using that slot, we can
schedule the extra interview.

• If college ui is using slot sj , there must still be
some interview slot ui isn’t using, for the same
reason that vj had a free interview slot. Let si
be the slot that that college i isn’t using.

• So lets create a chain of edges starting with
college ui that continues until we find a free
slot. If ui is using sj , identify the applicant
who is scheduled to interview with ui in slot

0-23

sj . In the figure, this is applicant v3. The sj
along the edge indicates that applicant u3 is
currently scheduled to interview with college
ui in slot sj (the one vj has open).

•

ui

u2

u3

u4

u5

vj

v2

v3

v4

v5

v6

sj

• Check to see if the conflicted applicant has slot
si free. If si is free, then we can reschedule her
into slot si then schedule uj in slot sj , which
would be a feasible schedule.

• But we might not be able to do this if u3 in the
diagram is already scheduled in slot si. In this
second figure, we draw an edge between v3 and
u3 to indicate that we have already scheduled
them in slot si.

0-24

•

ui

u2

u3

u4

u5

vj

v2

v3

v4

v5

v6

sj

si

• the next thing to check is whether school u3 is
using slot sj (the one that our original appli-
cant has free). If it does, then we can resched-
ule. The way to do it is to move applicant u3

from her current slot si with college u3 into
the slot sj with college u3. To restore her in-
terview with college ui we could move her from
slot sj to slot si with college ui.

• What would be do if college u3 already has an
interview scheduled in slot sj? Just repeat,
find the applicant who is scheduled to inter-
view with u3 in slot sj and ask them if they
can move their interview to slot si.

• If they can, here is what we would do - move
their interview in slot sj to slot si. Of course,

0-25

u3 is currently scheduled to interview applicant
v3 in slot si, so we can instead switch their in-
terview with college ui from slot sj to si. Then
applicant u3 ends up with the same two inter-
view slots being filled, but with the colleges
interchanged. This would free up slot sj for
applicant vj .

•

ui

u2

u3

u4

u5

vj

v2

v3

v4

v5

v6

sj

si

sj

• Lets do one more - if applicant v3 doesn’t have
si free, we’ll find the college with whom she
is scheduled to interview in slot si, and check
whether that college has sj free.

0-26

•

ui

u2

u3

u4

u5

vj

v2

v3

v4

v5

v6

sj

si

sj

si

• It might say no, in which case we would re-
peat. But eventually someone has to say yes.
The reason is that if it kept repeating, we only
have a finite number of colleges. So eventu-
ally we would have to loop back and hit either
college ui or one of the others we had encoun-
tered before. It could never be ui because we
can only get to ui if ui is scheduled with some
applicant in slot i, but we started with the fact
that ui has slot si free.

• looping back to a college other than ui (with-
out hitting ui first) is also impossible because
the loop takes us through an interview sched-
uled in slot si. Since the original schedule was
feasible, each college has only one applicant
scheduled in slot si, so we would be looping

0-27

back through an applicant scheduled in slot j,
which ultimately leads back to ui.

• to complete everything, lets just explain the
rescheduling that occurs when college u5 says
that it has slot sj free. First v5 is resched-
uled from slot si with u5 to slot sj with u5.

His interview with u3 is rescheduled to slot si.
So v5 and u5 end up with the same interviews
(though at different times). Now u3 has a con-
flict, because v3 was originally schedule in slot
si with u3, so move his slot to sj then move his
interview with ui to slot si which we know ui

has free. This opens up slot sj with college ui

so we can accomodate vj . This complete the
induction.

• End Proof:

• notice that this proceedure is basically an algo-
rithm. Start with an arbitrary but incomplete
interview schedule, add a new interview that
has to be rescheduled, then reshuffle the other
interviews to make way. Our argument above
shows that this will eventually schedule all the
interviews.

0-28

