
1 Choice Theory with Uncertainty

• let X be a finite set of possible outcomes, or consequences

• for example, consumption bundles, payoffs to a stock portfolio,
outcomes of a research project

• N is the number of elements in X , x ∈ X is a typical element

• a lottery is a pair (X ,p) with p ∈ RN
+ , where p = {p1, . . . pN} and

N
∑

i=1

pi = 1

• interpret pi as the probability with which outcome or consequence
i happens

• X is very general - it could be simply money payoffs, or it could
be a finite set of lotteries

X = {(Y1, p1) ,
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Feasible Lotteries

1.0.1 Preferences

– it is natural to suppose that lotteries can be ordered in the
way that consumption bundles can

– interpret p < p′ to mean that the lottery p is at least as good
as the lottery p′

– the preference ordering < is said to be complete if for any pair
p, p′ ∈ L, either p < p′ or p′ < p

– < is said to transitive if for any p, p′, q ∈ L, p < p′ and
p′ < q ⇒ p < q

– interpret p ∼ p′ to mean indifference in the preference relation
< (i.e., p < p′ and p′ < p)

– < is said to satisfy Reduction of Compound Lotteries if for
any (X , p) , (X , p′) ∈ L

λ (X , p) + (1− λ) (X , p′) ∼ (X , λp+ (1− λ) p′)

0-1



– Continuity For any p, p′, p′′ ∈ L the sets

{λ ∈ [0, 1] : λp+ (1− λ) p′ < p′′}

and
{λ ∈ [0, 1] : p′′ < λp+ (1− λ) p′}

are both closed.

– Recall that transitivity,completeness and continuity imply the
existence of a utility function U : L → R such that p′ < p if
and only if U (p′) ≥ U (p)

– Independence Axiom p < p′ if and only if for all λ ∈ [0, 1] and
p′′ ∈ L

λp+ (1− λ) p′′ < λp′ + (1− λ) p′′

– A utility function U has the expected utility property if U (p) =
∑n

i=1
piu (xi)

– Regularity Properties

1. ∃b, w ∈ L : b < p < w for all p ∈ L
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2. λ > λ′ if and only if λb+ (1− λ)w ≻ λ′b+ (1− λ′)w

3. U satisfies the expected utility property if for every λ ∈
[0, 1] , p, p′ ∈ L

U (λp+ (1− λ) p′) = λU (p) + (1− λ)U (p′)

– Let x1 be the lottery in which the outcome x1 is received
with probability 1. Let x−1 be the lottery where x1 occurs
with probability 0 while each of the other outcomes xj occurs
with probability pj/ (1− p1). By the reduction of compound
lotteries

p ∼ p1x1 + (1− p1)x−1

Then by the hypothesis in the theorem and the property of
utility

U (p) = U (p1x1 + (1− p1)x−1)

= p1U (x1) + (1− p1)U (x−1)
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Now expand U (x−1) in the same manner, and proceed recur-
sively to get

U (p) =
n
∑

i=1

piU (xi)

– Expected Utility Theorem

– Theorem: Suppose< satisfies transitivity,completeness,continuity,
reduction of compound lotteries, the technical restrictions and
the independence axiom. Then there is a utility function U
associated with < that has the expected utility property.

– Proof: Step 1 - Define a potential utility function. Using
the technical restrictions, there is a best and worst lottery in
L so define a function u such that u (b) = 1 and u (w) = 0.
Now for each p ∈ L define

u (p) = {λ : λb+ (1− λ)w ∼ p}

Notice that this means

p ∼ u (p) b+ (1− u (p))w (1)
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– Step 2 - we don’t know whether u is actually a function. By
the technical restrictions the sets

{λ′ : λ′b+ (1− λ′)w < p}

and
{λ′ : p < λ′b+ (1− λ′)w}

are both closed subsets of [0, 1] by continuity. The union of
these sets is [0, 1] by completeness. Thus they have at least
one point in common. Suppose they have more than one point
in common, say λ′ and λ′′. Then without loss of generality
λ′′ > λ′. Then by the second technical restriction

λ′′b+ (1− λ′′)w ≻ λ′b+ (1− λ′)w

which is a contradiction to the supposition that they are in
the same set.

– Step 3 Show that u satisfies the expected utility property, i.e

u (λp+ (1− λ) p′)
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= λu (p) + (1− λ) u (p′)

– start with
λp+ (1− λ) p′

by 1 and the independence axiom this is indifferent to

λ [u (p) b+ (1− u (p))w] + (1− λ) p′

and consequently to

λ [u (p) b+ (1− u (p))w] + (1− λ) [u (p′) b+ (1− u (p′)w)]

By the reduction in compound lotteries this is indifferent to

[λu (p) + (1− λ)u (p′)] b+ [1− [λu (p) + (1− λ)u (p′)]]w

Then by the fact that this is indifferent to λp+(1− λ) p′ and
using the definition of u this gives

u (λp+ (1− λ) p′) =
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λu (p) + (1− λ)u (p′)

so u has the expected utility property by the previous propo-
sition.

– Final step - is u a utility function, i.e.

u (p) ≥ u (p′)

iff
p < p′

This follows immediately from the second technical restriction

– Problems with the Independence Axiom

– Allais - monetary prizes are {1000, 500, 0}. You are given the
choice between two lotteries

a = {0, 1, 0}

and
b = {.10, .89, .01}
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which means you can have 500 for sure, or take a 10 percent
chance of raising 500 to 1000 at the cost of a slight chance of
losing everything. The second pair of choices looks as follows

a′ = {0, .11, .89}

and
b′ = {.10, 0, .9}

which means that you have an 11 percent chance of winning
500 which you can turn in to a 10 percent chance of win-
ning 1000 at the cost of raising the chance of getting nothing
slightly. Most people choose a over b and b′ over a′, which is
inconsistent with the independence axiom

– Subjective Expected Utility

– start with S different states of the world. Associated with
each state is some kind of state contingent outcome xs ∈ Xs

– for example, in a Bayesian Game.
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–

x y

A 25,20 14,12
B 14,20 25,12
C 18,12 18,22

– a pair of mixed strategies q = {qA, qB, qC} and q′ =
{

q′x, q
′
y

}

(one for each player) generates a lottery over the outcome
space X = {(A, x) , (A, y) , (B, x) , (B, y) , (C, x) , (C, y)}. The
probabilities in this lottery are

{pAx, pAy, pBx, pBy, pCx, pCy} =

{

qAq
′
x, qAq

′
y, qBq

′
x, qBq

′
y, qCq

′
x, qCq

′
y

}

– let X = {X1,X2, . . .XS} and L = {(X1,P1) , . . . , (XS ,PS)}
where (Xs,Ps) is the set of all lotteries over the outcomes in
Xs

– objects in L are sequences with S elements. Suppose there is
a complete transitive binary relation over the objects in L
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– If we assume the Xs are all finite and contain the same J ele-
ments, then we can represent the sequence of state contingent
lotteries and a sequence of vectors, i.e.,

L =







p; p = {p1, p2, . . . , pS} ; ps ∈ R
J
+;

J
∑

j=1

psj = 1







– Suppose that a continuous rational preference relation � ex-
ists on the set L. For any pair p, p′ in L let

λp+ (1− λ)p′ = {λp1 + (1− λ)p′1, . . . , λpS + (1− λ)p′S}

– define πjk (p) to be the state contingent lottery where the jth

and kth components of p are interchanged.

– State Uniformity: For any p and p′ that differ only in their
jth component, if p � p′ then πjk (p) � πjk (p

′)

– Technical Conditions: (T1) there are best and worst elements
b and w in L; and (T2): if λ > λ′ then

λb+ (1− λ)w ≻ λ′b+ (1− λ′)w
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– Anscombe-Aumann theorem: Suppose preferences over L are
rational, continuous, state uniform and satisfy the indepen-
dence axiom. Then if the technical conditions T1 and T2 hold,
there is a unique probability vector ρ ∈ R

S
+;
∑S

s=1
ρs = 1 and

utility function u : Ls → R for each s such that p � p′ if and
only if

S
∑

s=1

ρsu(ps) ≥
S
∑

s=1

ρsu(p
′
s)

where u (ps) =
∑J

j=1
vjpsj .

– The vector ρ is referred to as subjective beliefs.

– Proof: Follow the proof of the expected utility theorem to
show that there is a linear utility function representing pref-
erences: i.e. p � p′ iff u(p) ≥ u(p′), and for any λ ∈ [0, 1],
u(λp + (1 − λ)p′) = λu(p) + (1 − λ)u(p′). Since there are J
elements in each Xs, then each p has J × S components pij
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and the linear utility function can be written as

S
∑

s=1

J
∑

j=1

vsjpsj

where the vsj represent a J×S vector of constants describing
the utility value of each of the physical outcomes in Xs. If p
and p′ differ only in their jthcomponent, and p � p′, then

s
∑

s=1

∑

j=1,J

vsjpsj ≥

s
∑

s=1

∑

j=1,J

vsjp
′
sj

implies that
J
∑

k=1

vjkpjk ≥
J
∑

k=1

vjkp
′
jk.

By state uniformity, πj1 (p) ≥ πj1 (p
′) implies, using the same
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reasoning that

J
∑

k=1

v1kpjk ≥
J
∑

k=1

v1kp
′
jk.

Since this must be true for all pjk and p′jk pairs and for every
every index j, this requires that vnk = γnv1k for some non-
negative vector of constants γn. Then we can write the utility
function as

S
∑

s=1

J
∑

j=1

γsv1jpsj

By T2 at least one of the γi must be positive. Then define
the utility function

u (p) =

S
∑

s=1

γs
∑S

s′=1
γs′

J
∑

j=1

psjv1j

where one can interpret γs∑
S

s′=1
γ
s′

as the subjective probability
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with which the dm believes state s will occur and u (p) =
∑J

j=1
psjv1j with v1j representing the ’value’ of outcome j.

– Anscombe-Aumann and Rationalizability

– Suppose the players play the following game:

–
1,−1 −1, 1

−1, 1 1,−1
(which is called matching pennies)

– We say the profile of strategies (top,left) is rationalizable be-
cause the row player expects the column player to play left
because he thinks the row player will play down because he
thinks the column player will play right because he thinks the
row player will play top (which he does).

– Using the AA approach above, suppose the row player believes
that the column player can have one of two types tr or tl.
These types could use any strategy rule you like, but for the
sake of argument, suppose the rule used by tl is to play left
while tr uses the rule play right.

– Then a row player who subjectively assigns probability 1 to
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the state tl will play top for sure - not very interesting. Also
not Nash because the row player seems to believe the column
player will do something that doesn’t make sense.

– the column player is doing the same thing - lets assign types
tu and td to the row player.

– then all the ti’s will be interpreted as belief types.

– for example, the belief type tu is a row player who believes that
the column player has type tl with probablity 1. The column
player of type tl has belief type that assigns probability 1 to
the row player having belief type td.

– the row player of type td believes the column player has type tr
with probability 1 while the column player of type tr believes
the row player has type tu with probability 1.

– Now, each player belief type chooses a best reply to a strategy
rule which is itself a best reply. No one believes anyone is
doing anything stupid, nor do they believe anyone believes
that anyone else is doing anything stupid, etc.

– The state space

0-15



– the state is a pair of belief types (tR, tC). Each player learns
something about the state space because they see their own
type

–
(tu, tl) (tu, tr)

(td, tl) (td, tr)

– (up, left) - Bayesian equilibrium without a common prior

– Problems with Subjective Expected Utility: Ellsberg -
there are two urns consisting of red and black balls. The first
urn has 51 red balls and 49 black balls. The second urn has
100 red and black balls (the composition is unknown). The
first experiment proposes to give you 10 dollars if a red ball is
drawn - you choose which urn you want the ball to be drawn
from, the second experiment is the same except that you are
paid 10 dollars if a black ball is drawn - again choose a urn.
Most people choose the first urn in both cases

– Anscombe Aumann and the uncertain urn - the state is ev-
idently the number of red balls in the second urn - S =
{0, 1, . . . , 100}.
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– Betting on red in the second urn provides a state contingent
lottery that looks like this

p =

{

{0, 1} ,

{

1

100
,
99

100

}

, . . . , {1, 0}

}

where Xs = {$10, $0} for each s.

– Betting on black in the second urn also gives a state continent
lottery

p′ =

{

{1, 0} ,

{

99

100
,

1

100

}

, . . . , {0, 1}

}

– Now use the theorem and the payoff associated with p is

100
∑

s=0

ρs

(

s

100
v (10) +

(

100− s

100

)

v (0)

)

.

– Now take v (0) = 0 so that this equals

v (10)

100
∑

s=0

ρs
s

100
≡ qv (10) .
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– Do the same for the state contingent lottery associated with
betting on black in the second urn to get (1− q) v (10)

– From expected utility betting on red in the first urn has value
(again normalizing) 51

100
u (10) while betting on black in the

first urn has value 49

100
u (10).

– So the choices first urn in both cases require

51

100
u (10) > qv (10)

and

49

100
u (10) > (1− q) v (10) ⇐⇒ qv (10) >

51

100
u (10)

– this is inconsistent with Anscombe Aumann

– Alternatives to expected utility: Uncertainty Aver-

sion

– (sometimes called the multiple priors model): Define Π as the
set of all probability distributions over the outcome space X .
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If the outcome space is finite with J elements, this is the set
{

π ∈ R
J
+ :
∑J

i=1
πi = 1

}

.

– the bet is called a ’prospect’. A prospect where the probabil-
ities are known is called a risky prospect. So betting on urn
1 in ellsberg is a risky prospect whether you bet on black or
red.

– a prospect where you don’t know the probabiities is called an
uncertain prospects.

– each prospect is characterized by a set of outcomes, and a set

of probability distributions P ⊂ Π - (X ,P)

– a prospect (X ,P) is preferred to prospect (X ,P ′) if and only
if there is a set of constants vj (values of each of the outcomes)
such that

inf
π∈P

J
∑

j=1

πjvj ≥ inf
π∈P′

J
∑

j=1

πsvj

– in words, the decision maker has multiple prior beliefs and
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evaluates every plan using the prior in the set they think is
possible which gives the plan the lowest expected utility.

– in the Ellsberg urn example, this is straightforward. The col-
lection P can be thought of as a collection of prior probabili-
ties π with which the ball drawn from the unknown urn B is
red, for example π ∈

[

1

4
, 3

4

]

. Then the value of the unknown
urn when betting on red is

inf
π∈[ 14 ,

3

4 ]
πu (10) + (1− π)u (0)

=
1

4
u (10) +

3

4
u (0) <

51

100
u (10) +

49

100
u (0)

so it is better to choose the known urn when betting on red.

– for a bet on black, the value of the unknown urn B is

inf
π∈[ 14 ,

3

4 ]
(1− π)u (10) + πu (0) =

1

4
u (10) +

3

4
u (0)

so it is still better to take the known urn.
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– Alternatives: Recursive Expected Utility

– similar to multiple priors, this focuses on uncertain prospects.

– Instead of assuming the worst, it instead assume a probability
distribution F over the set of probability distributions π over
the outcomes in X .

– For simplicity, suppose that F consists of a finite set P of
probability vectors, i.e , P =

{

π1, . . . , πT
}

, where each πt is
a vector of probabilities with J elements. Let p be a vector
of T probabilities, pt representing the probability with which
the probability distribution πt is the correct one.

– An uncertain prospect is a pair {p,P}. Notice that a prospect
is just a compound lottery.

– Recursive Expect Utility assumes that decision makers can’t
reduce compound lotteries. Instead, it assumes that {p,P}
is preferred to a prospect {p′,P ′} if there exists a concave
function u and a set of constants v ∈ R

J such that {p,P} �
{p′,P ′} iff
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–
T
∑

t=1

u





J
∑

j=1

πt
jvj



 pt ≥

T
∑

t=1

u





J
∑

j=1

πjvj



 pt′ (2)

– Notice that if p and p′ are degenerate, in the sense that they
assign probability 1 to some πt, then p and p′ will be evaluated
using expected utility.

– Notice also that the values vj assigned to each outcome are
independent of t. So recursive expected utility decision makers
rank risky lotteries the same way that expected utility decision
makers do.

– For lotteries with uncertainty, this is no longer true. For ex-
ample, in the Ellsberg problem, the ’first’ box had 51 Red
balls and 49 Black balls. The second box has 100 red and
black balls.
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– when betting on black, there are 2 outcomes in X , {win 10,win 0}
while there are 101 outcomes in P , these are

{

(0, 1) ,

(

1

100
,
99

100

)

, . . . , (1, 0)

}

where the first element in each pair is the probability of draw-
ing a black ball when there are t black balls in the box.

– The first box represents a prospect where p49 = 1 (i.e the
probability of drawing a black ball is 49

100
, while all the other

pt are zero. That is the definition of a risky prospect. The
second box represents an uncertain prospect because a lot of
the pt are non-zero.

– The subjective expected utility decision maker reduces com-
pound lotteries so when betting on black in the unknown box
their payoff is

100
∑

t=0

pt
{

t

100
v10 +

100− t

100
v0

}
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≥
100
∑

t=0

pt′
{

t

100
v10 +

100− t

100
v0

}

=

v10

100
∑

t=0

pt′
t

100
+ v0

(

1−
100
∑

t=0

pt′
t

100

)

.

As a result they act as if they had assigned a subjective prob-
ability to the event draw a black ball equal to

q =
100
∑

t=0

pt′
t

100

which should be larger than 51

100
as long as they choose the

first box when they bet on red.

– The recursive expected utility decision maker who is betting
on black evaluates the first box the same way a subjective
expected utility decision maker does. They assign it value
u
(

49

100
u10 +

51

100
u0

)

. However, he or she evaluates the second
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box as
100
∑

t=0

pt′u

({

t

100
v10 +

100− t

100
v0

})

≤ u (qv10 + (1− q) v0)

provided u is concave.

– If they choose box 1 when betting on red, they reveal

u

(

51

100
u10 +

49

100
u0

)

≥ u (qv0 + (1− q) v10)

so since u is an increasing function we have

u (qv10 + (1− q) v0) ≥ u

(

51

100
u0 +

49

100
u10

)

however, their actual payoff is now lower than the left hand
side, so if u is strictly concave and the pt are spread out
enough, they may still choose the first box when betting on
black.

0-25



– Alternatives: Prospect Theory

– as before, imagine a finite set of outcomes X . As before, these
might be lotteries, the logic is the same

– suppose the objects are ordered from worst to best, i.e., x1 is
the worst outcome, xJ is the best. Choose a status quo out-
come, say xk sometimes called a reference point. Let {p,X}
be lottery. Then prospect theory (roughly) says that

p � p′

if and only if there are J constants {uj}
J

j=1
representing car-

dinal payoff, a reference point x∗
k and a constant λ such that

∑

j

pjxj +
∑

j<k

λpj (uj − uk)

– in Ellsberg X is the set of objective lotteries we described
before, J = 101 and xj is a lottery where there are j − 1 red
balls in the unknown urn. So if you are betting on red, the
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constant to be used in prospect theory is uj = j−1

100
u (10) +

(

1− j−1

100

)

u (0). Notice, these lotteries are ordered from lowest
to highest. When you are betting on black, the risky urn gives
only a single lottery, so it has payoff u49 = 49

100
u (10)+ 51

100
u (0)

– When betting on black, that seems a natural reference point
when you evaluate the uncertain urn (the one with 100 read
and black balls), so prospect theory would say the payoff to
the uncertain urn is

101
∑

j=1

pj−1

[

j − 1

100
u (0) +

(

1−
j − 1

100

)

u (10)

]

+
∑

j−1>51

pj−1λ (u49 − uj−1)

which is generally going to be much smaller than 49

100
u (10) +

51

100
u (0) even if

∑101

j=1
pj−1

j−1

100
is equal to 49

100

– three different ways of explaining the same behavior.
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– Personal Equilibrium - to define the reference point

– there are two firms A and B producing products with different
characteristics and offering them to a continuum of consumers

– at the first stage of the game, two firms advertize their prices
to consumers and provide descriptions that reveal to con-
sumers that the products are differentiated in such a way
that each consumer will perceive a quality difference of value
d between the products. However no consumer knows which
product is better for them.

– Each consumer forms an expectation λ of the probability with
which he or she will buy from firm A. This is the reference
point the consumers take to the second stage of the game.

– At the second stage of the game, consumers learn which of the
two products A or B is better for them and make a purchase
decision.

– a consumer who learns ex post that product A is best suited
to him, and who proceeds to buy from firm A receives payoff
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that depends on his expectation

V − pa − (1− λ) d

– the first part of this V − pa is the intrinsic payoff associated
with buying what turns out to be the best product for them,
the second part is a perceived loss associated with the fact
that he believed that with probability (1− λ) he was going to
buy from firm B and from this perspective he is disappointed
at how firm A’s product compares to the one he thought he
would buy

– he would also be pleased that he ended up buying at a lower
price than he expected in this case, but we ignore this and
focus on losses to make things simple.

– if he instead buys from firm B his payoff is

V − pb − γd− λd− λ (pb − pa)

– here the term γd represents the intrinsic loss associated with
buying something other than his ideal product. The reference
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point determined the rest - with probability λ the consumer
expected to buy from firm a and his chosen product B is dis-
appointingly different from what he expected. Furthermore,
if he expected to buy from firm A, then the price pb is disap-
pointingly high, which is why we subtract the other term.

– his reference point λ will now determine which of the two
products he buys - depending on which of these two payoffs is
higher - the figure shows how the reference point affects the
decision
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x0

V − pb − γd

1V − pb − γd− d− (pb − pa)

V − pa − d

λ∗
a

– if λ is zero (the consumer doesn’t expect at all to buy from
firm A, then provided the intrisic quality difference is small (i.e
γd is close to zero), product B will be preferred because the
loss associated with unexpectedly buying from A dominates

– one significant point is λ∗
a which is the point at which the con-
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sumer is just indifferent between the two products - suppose
the parameters are such that this is less than 1

2
.

– the reference point then affects the decision of a type A con-
sumer in the following way: he buys











B if λ < λ∗
a

A or B λ = λ∗
a

A otherwise.

– a similar argument applies when the consumer is type B

– the curve for product A is shifted down by the difference γd,
the curve for B is shifted up

– the indifference point λ∗
b lies to the right of the point λ∗

a

– the final restriction is that the consumers expectation λ should
be ’rational’ or equal to the true expectation - ’personal equi-
librium’
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x0

V − pb − γd

1

V − pa − d

λ∗
a V − pb − d− (pb − pa)λ∗

b

– there are then a number of equilibria depending on the values
of λ∗

a and λ∗
b

– from the figures observe that if the consumer expects to buy
from firm B for sure, then he will buy from firm B whether
he is type B or A, similiarly if he expects to buy from firm A
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for sure. In these two cases his expectations will be realized

– if λ∗
a < 1

2
, there is an equilibrium in which all the type B

consumers buy from firm B and each of the type A consumers
buys from firm A with probability ρ. If it happens that

1

2
ρ = λ∗

a

then the consumer’s belief that he will buy from firm A with
probability λ∗

a is actually right (he will be an A consumer half
the time and buy in that case with probability ρ, while if he
is a B consumer he won’t buy from A at all)

– notice that ρ cannot exceed 1 which is why this will only work
if λ∗

a < 1

2
.

– there is a similar equilibrium when the consumer believes he
will buy from A with probability λ∗

b . This happens if

1

2
+

1

2
ρ = λ∗

b
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– from the figure above, when the consumer’s reference point is
λ∗
b and it turns out that A is better suited to him, then he

will buy for sure. If he is better suited to B, he is indifferent
between the two, so if he buys A with probability ρ, his belief
is again justified.

– notice that this can only work if λ∗
b happens to be larger than

1

2
.

– some simple comparative statics - consumers expect to buy
from A for sure (from the figure, if that is their reference
point, they will always buy from A even when B turns out to
be the product that is better suited to them)

– if firm A raises its price and consumers reference point doesn’t
change, then consumers will continue to buy from A for sure.
Heuristically, firm A will have a pretty high price in equilib-
rium (the i-(pod,pad,book,phone) story). So (some) firms will
do very well when selling to ’behavioral’ consumers.

– start instead in the equilibrium where the reference point is λ∗
a

and consumers buy from A with probability ρ. If firm A raises
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it price, then it will take a higher reference point and a higher
value of ρ to make consumers indifferent. Counterintuitively
raising price will increase sales. In this kind of environment
you might expect both firms to have very high prices and close
market shares (Canadian cell phone service is like this - very
high prices despite the fact there are many firms).

– there is also a very competitive outcome in which firms set
low prices, references points are interior, but if any firm raises
its price, consumers revert to an equilibrium in which they
expect to buy for sure from the firm who didn’t raise price.

0-36


