1 Theory of Auctions

1.1 Independent Private Value Auctions

e for the moment consider an environment in which there is a single
seller who wants to sell one indivisible unit of output to one of n
buyers whose valuations are private, a buyer whose valuation is 6
who trades at price p gets surplus € — p the seller gets surplus p in
this case. Each buyer’s valuation is independently drawn from a
distribution F on [0,1]. F' is continously differentiable and strictly
Increasing.

e auctions are implemented using a variety of indirect mechanisms

1. in a first price auction each buyer submits a bid and the high
bidder pays his bid, securites auctions, treasury bills, procure-
ment, timber auctions

2. in a second price auction each buyer submits a bid, the high
bidder wins and pays the bid of the second high bidder, ebay,
clearing house
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. english auction - the auctioneer asks for a starting bid, then
asks for a volunteer to raise the bid, he continues to do this
until no one offers to raise the bid, the last bidder offered to
raise the bid wins and pays that bid

. english button auction - each bidder who wants to bid begins
by pressing and holding down a button. The price is then
raised continuously and each bidder releases the button when
the price gets too high. When there is only one bidder left
holding down a button, that bidder wins and pays the price
where the last bidder dropped out

. dutch auction - the price falls continuously until some bidder
yells stop. The yelling bidder wins and pays the price at which
the price stopped. Dutch flower auctions

. all pay auction - all bidders submit bids, the high bidder wins
but all bidders pay what they bid.

. Cremer McLean auction - a second price auction in which all
bidders who want to participate have to agree ex ante to pay
a fee (that might depend on the bids of the other bidders)
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e Sometimes (increasing virtual valuations, iid valuations) the second
price auction will be optimal.

e Even when auctions aren’t optimal for the seller, many of them are
comparable in terms of revenue.

e The following theorem allows you to compare all of these auctions
but the last one when valuations are iid.

1.2 The optimal selling mechanism

An outcome function for the seller is a specification of what the seller
wants to happen for each profile of valuations 6 = {6y,...,0,}. An
outcome consists of three things, a price that each buyer pays if he gets
the object for sale, a price he pays if he doesn’t get it, and the probability
with which he gets the object. These depend on the profiles of valuations,
so lets write them as g; (0) , p; (0) and p’, (0), where p; (0) is the price that
buyer ¢ pays when he gets the good, and p) (f) is the price he pays if
he doesn’t get the good, while ¢; (0) is the probability that i is actually
given the good.
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For example, suppose the seller wants to run the following mechanism
- each buyer pays a fee x to participate in the mechanism, then one of
the buyers is chosen at random and given the good in exchange for a
fixed fee p. Then the seller would like to choose the functions that are
independent of 6 as follows:

q; (0) = %

pi(0) =D
and

p (0) = k.

Hopetully you can see that though this represents an outcome function,
the seller can’t really expect it to happen. First of all, no buyer whose
value is below p will participate. Even if their values are above p they

will only participate if
(0 — )—1 >
D K.
n
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The seller can do anything she likes at this point as long as
Z ¢ (0) <1

She can assign any profile of payments she likes, including negative pay-
ments in p (/) and p’ (0).

The payoff to buyer ¢ from any outcome @ is then (6; — p; (0)) q; (0) —
(1 —q; (0)) pi (8) which allows us to compute the expected payoff associ-
ated with the mechanism for each of the buyers

E{(0: —pi (0))q (0) — (1 —q:(0))p; (0)}
[ 00,0200 0000-0~0 = 4 0,0-0) 1 (0,00 T F (0

i i

(1)

Once the seller has defined the three functions, she can use this payoft

function to determine whether or not the auction is worth participating
in, and whether it is incentive compatible.

As for the outside option, we don’t have to compute any complicated

arg max in the auction, we can just use the fact that a seller who doesn’t
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like the bids that some buyer submits can just refuse to trade with the
buyer. So the outside option value for each buyer can be set to 0 for every
buyer independent of type. Individual rationality simply means that (1)
is non-negative for each buyer, and for each of the buyer’s types.

Each mechanism like this has a corresponding reduce form represen-
tation as follows:

P(0;) =E {sz (0)qi (0) + (1 —q; (0)) p; (9)} : (2)

So all we need to do to find the best way to sell is to maximize the
expectation of (2) subject to the incentive compatibility and individual
rationality constraints defined by (1).

Correspondingly, we can write

Qi (9z) = [Eg; (91'7 9—7;) .

The collection {P; (6;) Q; (6;)}

.1, 1s sometimes called the reduced form
mechanism.
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Buyer i’s expected payoft from participating in the mechanism is
Qi (0;)0; — P; (0;) .

If the auction mechanism is incentive compatible, then
Qi (0:)0; — P (0:) > Q; (07) 0; — Pi (6;) .

Lets assume that (); and P; are differentiable. Then this requires

Q; (0;) 0; = P} (0:) . (3)

This expression is an identity (i.e., it is true for all values of 6;, so from
basic calculus

P; (6;) :/Hi Pi/(t)dt:/Hi Q; (t) tdt =
0;
Qi (0;)0; — /0 Qi (t)dt
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(which is just integration by parts). There is no constant term at the be-
ginning of this expression because P; (0) > 0 would mean the mechanism
did not satisty individual rationality for a buyer of type O.

If two functions are identically equal, so are their derivatives, so

P"(0;) = Q" (0:) 0 + Q" (0:) .
What is important about this is the second order necessary condition
Q" (6:)0; — P" (6;) = —Q" (6;)
will be satisfied if the mechanism {p; (0),q; (0)},_; ,,
(that is, higher types trade with higher probability).
Assuming (just to make life simple) we treat all the buyers the same

way so that the functions P; and (); are all the same, we can rewrite the
seller’s revenue (2) as

satisfies Q' (6) > 0

1 0.
n/o {Q(Qi)&;—/o Q(t)dt}f(@i)dgi
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/Q(H)edF —n// Q (t)dtf (6;)do
/Q ( f(@i) ))f(eodez-:

/01_“/01;”;{% (i -, n) (9@' - 1;@;@)}f(91)---f(9n)d91...d9n.
(4)

In this series of inequalities, the fourth one follows by integrating the
previous expression by parts.

Now the constraint on ¢; is that for every profile of types 6;...,60,,
the sum Y, ¢; (6;) should be less than or equal to one. This means that
for every profile of types, the sum is a weighted average of the virtual
valuations of each type. If for some profile of types, none of these virtual
valuations are positive, then this expression suggests that setting all the
q; to zero is the best thing to do. While if one of more of the virtual
valuations is positive, then the best thing to do is to set ¢; = 1 for the
largest such virtual valuation.




This tells us exactly how to maximize revenue. Choose and r such

that r = 1}50()"“) so that the virtual valuation is exactly equal to 0 when

it is evaluated at r. For each profile of values (61, ...,0,), if the highest
value for 6, is less than or equal to r, don’t sell to anyone, otherwise
sell for sure to the highest bidder. (these assertions follow from the
monotonicity of the virtual valuation function). As we will show in the
next section, this is exactly what happens when you run an auction with
reserve price . Any pricing rule you use to resolve the auction will work
provided it gives

0;
P6)=QE)0~ [ Qua
for each 0;.

1.3 Revenue Equivalence Theorem

e Revenue Equivalence Theorem: Suppose that buyer valuations are
identically and independently distributed according to some known
distribution F' whose support is an interval in R and for which 6 —
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—1}?)9) is an increasing function. Suppose further that the indirect

mechanism that guides trade has an equilibrium in which the buyer
with the highest valuation trades if and only if his valuation is at
least r, and that a buyer with valuation r gets an expected payoft
equal to zero. Then the seller’s expected revenue from this indirect
mechanism is

n / 1F”_1 (6) [9 1 ;,,1? 9()9)] F' (0)d6o

Furthermore, each buyer’s expected payment is given by
0
PO)=F"10)0— / F* 1 (2)dx

e Proof: This follows the mechanism design argument in the previous
lecture, but I give it here for completeness

e cach buyers’ expected payoft is given by
Qi (0)0 — P;(0)
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where (); is the probability with which the buyer trades and P; is
the expected payment the buyer makes to the seller.

by assumption the indirect mechanism has an equilibrium in which
the buyer with the highest valuation trades, so this trading prob-
ability is the same for every one and equal to F™~1 () for buyers
whose valuations at at least r, and it is equal to zero otherwise

since it cannot pay for a buyer to behave as if his type were different
from his true type in any equilibrium, it must be that

Fr=1(0) 0 = P/ (9)
for every buyer whose valuation is at least r

Integrating by parts gives
0 0
P; (0) = / F" 1 (s) sds=F""1(0)0 — / F" t(s)ds (5)
0 r

this gives the result for buyers’ expected payoft. The seller’s ex-
pected revenue is the sum of the expected revenue for each buyer,
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or

”/01 P; () dF (9) :n/Tl {F”l(Q)H/TQFnl(s)ds}dF(Q)

e because P; (t) =0ift < r.

e to integrate this by parts write it first as

n{/l {F"1(«9)0}dF(9)—/Tl/TQF”1(s)dde(9)}.

In the second term in the brackets, think of

u (6) :/THF”_1 (s)ds

and

dv (0) = dF (0)
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so that the second double integral can be written as

1

—/TlF”(H)dQ:

T

/Tl F" 1 (0)dh — /Tl F™(6) d6.

Recombine this with the first integral to get

n{/l {F"(0)0} dF (§) — /Tl Frl(9) dﬂ/rl F7 () de} _

n / 117"1—1 (9) [9 2 ];,1? 9()9)] F' () dé.

0
F(@)/ F* 1 (s)ds

1.4 Using Revenue Equivalence - First Price Auction

e in the first lecture, we showed an example of a first price auction
that possessed an equilibrium in increasing bidding rules. Now
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let us just suppose that such an equilibrium exists more generally.
Then the expected payment is equal to the bid multiplied by the
probability of winning, i.e.,

Py (6) = Q; (6) bi (6) = "~ (6) b, ()

ff Fr=1(s)ds

bi (0) = 0 — = ) (6)

for each 6 > r

it all bidders use this bid function, the bidder with the high valua-
tion will win because this function is increasing, it satisfies incentive
compatiblity, so no bidder using it would prefer to act like a bidder
with another valuation. Check for yourself that is doesn’t pay to
bid prices that no other bidder would ever bid and that a buyer of
valuation r gets zero expected payoft

in other words, the revenue equivalence theorem can be used to
calculate the equilibrium bidding strategy in a first price auction.
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1.5

Second Price Auction

in a second price auction, there is an equilibrium in which each
buyer bids his true valuation. This bidding strategy is increasing,
so the buyer with the highest valuation will trade in a second price
auction - a buyer who bids the reserve price will only win if no
other buyers bid, but then he gets zero surplus

thus from the revenue equivalence theorem a first and second price
auction in which the reserve price is the same give the seller the
same expected revenue.

furthermore, the expected payment made by a bidder of type 6
in the second price auction is equal to the probability of winning
multiplied by the expectation of the second highest valuation con-
ditional on # being the highest valuation.

the from (5), it follows that the equilibrium bid in the first price
auction for a bidder of type 6 is equal to the expected value of the
second highest valuation or r whichever is higher, conditional on 6
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being the highest valuation (just integrate by parts)

JT(n=1)F ()" 2 f (s) rds . J2(n=1)F (s)" 2 f (5) sds _

Fn—l (9) Fn_l (9)
JT(n=1)F ()" f (s)rds . [T —1)F(s)" 2 f(s)sds
Fn—l (9) Fn—l (9) o
rF (7“)”_1
Fo-1(g) ©

n—1 0 0 n—1
F (s) 3|T — [T F(s)" " ds
Fr=1(0)
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1.6 All-Pay Auction

e let us use the technique we employed for first price auctions to
compute the equilibrium in the all pay auction, suppose there is an
equilibrium in increasing bidding strategies so that the equilibrium
outcome is always that the buyer with the high valuation ends up
trading.

e since everyone pays whether or not they win the object, the ex-
pected payment is equal to the bid, i.e.,

b(0) = FP=1 ()6 — /9 F=1(s)ds

e Notice that in each of these applications, we know the allocation
rule ¢; but we don’t know the rules p; or p} because they have to
be derived from equilibrium play which differs in each of the three
auctions. The theorem says that this equilibrium play, whatever it
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is, must support an expected price P that satisfies
0
P#)=r"" (9)9—/ F* 1 (2) dz.

thats why we were able to derive the equilibrium bidding functions
from each of the last equation. Once we have those functions, we
can deduce the outcome functions associated with each.

For each of the three auctions we have

1 6; > QJ\V/J#I

0 otherwise.

d; (‘97;79—@') = {

or if you think that F' has atoms, q (6;) = #{j:j>]1.,vj,#j}.

In the second price auction, we have p. (6;,0_;) = 0 while

Di ((9@’9_@) — ITlax {9]}
J71
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1.7

In the first price auction p} is always 0 while,

r

Fr1(0)

0
p-(@- 9 .):0._f F 1(3)d8

Finally for the all pay auction
0
yy (91, 9_1) — p/ (91, (9_2) = Fn_l ((9) 0 — / Fn_l (S) ds.

Identification

bidder types are unknowns from the perspective of an outside ob-
server, however they are associated with whatever the outside ob-
server can see

the theory starts with two pieces of information, and auction for-
mat, call it A and a family F of type distributions that the modeler
believes are possible. In this lecture and second price auction is an
auction format, while we believe that types are i.i.d and with each

0-19



individual bidders type described by some distribution function F
on [0, 1] for which F' has a strictly positive density at each point in
0,1]

an outside observer might have historical data on winning bids in
a first price auction, or maybe the observer can record all the bids
in an auction. This historical data involves some distribution G of
observable information.

Bayesian equilibrium play in the auction A induces some distribu-
tion on the observables denoted by ¥ 4 : F — G where G is the
image of F induced by the transformation ¥ 4 - in words, G is all
the distributions of observables that you could possibly get through
equilibrium play for some distribution F' € F.

Identification is the problem of working backwards from G to F.

Formally, the type distribution associated with some auction A
is said to indentifiable if for every G € G there is a unique type
distribution F' such that G = W 4 (F).
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in this section we consider two questions - are type distributions
identifiable in the second price auction if you have observed a his-
torical series of transactions prices, and, are type distributions
identifiable in the first price auction if you have observed all the

bids.

to start, suppose you have observed a sequence of auctions and
recorded the bids that were made by different bidders, i.e., if you
have held T auctions, each of which had n bidders, then you have
observations on nI' different bids. You believe the values behind
these bids are independently drawn from some unknown distribu-
tion F'.

an econometrician has estimated that the observed distribution of
bids is given by G, a cumulative distribution function that we’ll
assume has a density. The problem is to tell him/her what the
unknown distribution of values is assuming that the bidders are all
playing equilibrium strategies.

As you now know, the equilibrium strategies depend on the type
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of auction the data comes from

for a second price auction this is easy if G (b) is the proportion of
all bids that were less than or equal to b then that is also the pro-
portion of values that are less than or equal to b - the distribution
of bids is the distribution of values

next time the econometrician arrives you learn they misinterpreted
the data. The n1' observations that were used to estimate GG
weren’t all the bids, they were just nl' observations on the prices
that people paid after winning the auction - they are prices from
a second price auction not the bids. Can you still identify the
distribution of values?

The result is as follows, if G (p) is the distribution of trading prices
in the second price auction (the proportion of auctions for which
the winning bidder paid something less than or equal to p, then,
the proportion of bidders in the auctions whose values are less than
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of equal to p is given by solving the following equation for F

F
G(p)=n(n-— 1)/ t" 2 (1 —t) dt.
0
Notice that since the right hand side is strictly increasing in F, it

has a unique solution for every p.

e t0 see this, start with the observation that in any particuar second
price auction, the trading price is the second highest value among
all the bidders who were there. If the distribution of values were
equal to F', then the probability that the second highest value is
equal to some winning price b is

n(n—1)F@®)"1-F(@)f®)

So the distribution F' supports a cumulative distribution

0 =ntn-1) [(FE) (10 ()1 (1)
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G (b) is given by the data we have, so we have to try to find an F
that will support this relationship.

now do the integration on the right hand side by a change of vari-

~

able in which t = F (b) and dt = f (5) db so it equals

F(b)
7Mn—1X/ t" 2 (1 —t)dt
0

This gives the property that F' has to satisfy so that it would
support the observed distribution of bids - which is the result we
want.

Case 2: (G is the distribution of bids in a first price auction.

In this case the result is that if the proportion of bids that is less
than or equal to p in a series of identical first price auctions with
N bidders then, F' must satisfy

G(p):F<p—|— G ) )

g(p)(n—1)
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e what this says is that you find F' (x) by finding p, such that

G (p)
T = Pg +
g (pa:) (n o 1)
then taking F' (x) as G (p;). Notice that the function p+ G(p)

g9(p)(n—1)
is completely determined by the data you have.

e Here is the argument: the expected payoff to a bidder in a first
price auction 1is

(0 —b(0") F"(8)
where 0’ is the value that the bidder pretends to be.

e if b is an equilibrium bidding strategy, then this expected payoft
will be maximized at v = v, which gives the first order condition

b (0) "1 (0) = (n—1)(0 —b(9)) F" 2 (0) f (9)
which you could write as

(6 —0(9)) f(9)

L= "Fope "V (7)
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e now for any bid b the data says that the probability that any bidder
will bid something less than or equal to b is

G(0(7)) = (7 ((9))) = ¥ (9)
where 6 is the type of bidder who bids b so that g (b (é)) b’ (é) =

f (9) or

evaluated at 0 = b1 (5) .

e Now we can substitute these last two observations into (7) and
evaluate them at 6 to get

1:(5—6) g@ (n—1)



1.8

which means that

f=0b+ )?(@ ,
g(@(n—l)

This expression just says that if we observe a bid 5,~then the type

of the player who submitted it must be b+ g(gc);((z)_l). This is

the inverse function for the bidding rule expressed in terms of the
observables (G rather than the unobservables.

the implication of this is that the proportion of bids that are less
than or equal to 5, G (5) is the same as the measure F (5 4+ T G(b) ) .

l;)(n—l)

Position Auctions

An search site has a webpage with a lot of traffic (like google).
This webpage has two ’slots’ at the top for ads. There are three
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firms who have their own websites with ads on them. Consumers
click through the ad slots on the search company’s web to look at
these firms’ ads. Any consumer who visits a firm web page will
either decide to buy the firm’s good, in which case the payoff to
both the consumer and the firm is 1 (price plays no role here). If
the consumer doesn’t buy, the payoff to both the consumer and
firm is 0.

e cach firm has a quality v which measures the probability that a con-
sumer will choose to buy the product after seeing the web page.
Each firm knows its own quality, otherwise information is incom-
plete. Ex ante each consumer believes that each firm’s quality is
independently drawn from some distribution F with support [0, 1].

e The search site holds an auction in which each of the three firms
bids the amount they are willing to pay per ’click’. A click occurs
when a consumer clicks through the link in the search sites slot
and looks at an individual firm’s webpage.

e the highest bidder’s link is placed in the top slot - the high bidder
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pays the second highest bid for each click on its ad. The second
highest bidder’s ad is placed in the lower slot, the second high
bidder pays whatever the third highest bidder bid.

Clicking on an ad is assumed to be costly - the search cost for

consumer ¢ is s; drawn using a distribution G with support on
0,1].

the process then goes like this - each of the three firms submits a
bid, say b;. Suppose by > by > b3. Firm 1 (who bids b1) has their
link placed in the top slot, firm 2 has their link placed in the lower
slot.

each consumer decides whether or not to click on one of the links
on the search site’s web page.

when a consumer clicks through the link to firm ¢ and views firm
i’s webpage, firm ¢ makes a payment to the search firm equal to
whatever price it won in the auction, each consumer buys from the
firm with probability v;.
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e a consumer who clicks through a link and fails to buy can try again
at the second slot

e let T} and 15 be the proportion of consumers who click on the top
slot. Then the profit of firm 1 is

Ty (v1 — be)

e the profit of firm 2 is
T2 (’02 — bg)

e firm 3 earns 0

e The payoft to a consumer with search cost s who clicks through
slot ¢ is
UV, — S
while the payoff to a consumer who clicks through both slots is
vy — s+ (1 —vy) (vg — s)
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e Result: There is an equilibrium in which each of the three firms

bids less than their value in the auction, both 17 and 75 are positive
with 17 > T5.

e Lets assume, as we did with standard auctions, that the bidding
rule that firms use is a strictly increasing function b (v) (whose
range is contained in [0, 1]). If so, the probability that a firm with
value v wins the top slot is

F* (v)

which is exactly the same as in the first and second price auctions
we looked at previously. The probability the firm wins the second

slot 1s
2F (v) (1 — F (v))

e Without knowing what the equiilbrium bidding function is, we can
still address an interesting question. As we look at the page with
two ads displayed, what should we expect the quality of the link
in the first ad to be?
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e We have to begin with the fact that when the firm starts her search
she already has a bunch of information, in particular, she can see
the names of the firms in each of the slots, and presumably knows
the identify of the firm that didn’t win a spot. Call the firms A B
and C'. The probability that things work out this way is

/// f (v f (D) dvdv'dv =

So all the probability calculations that follow should be conditional
on that. This condition will cancel out when we do conditional
probability calculations.
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The expected quality of firm A is then

v = 5[5 0F? (0) f (0) dﬁ.

|

the reason this is interesting is that consumers will only click on a
slot if the expected payoff exceeds their search cost. V; represents
the expected payoft to searching the top slot. This determines the
click through rate - Ty = G (V1) - this is the measure or proportion
of consumers whose search costs are low enough that they will be
willing to click through the link in the top slot.

the click through rate on the lower slot is more complicated. Only
consumers whose search cost is below V; will ever click on the
second slot - and only if they fail to trade with firm A. Even then,
they won’t know the quality of firm A but will become pessimistic
because the know that it is the best of the two firms.

this requires figuring out the expected quality of firm B conditional
on having failed to find a trade in the upper slot.
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e we’ll do this by calculating the conditional density for each value
v of firm B - recall from the rule for conditional probability

Pr(v N failed to trade with A)
Pr (failed to trade with A)

Pr (v|failed to trade with A) =

e both probabilities should be conditional on the outcome with A in

the top slot, but the condition % will be in both the numerator

and denominator, so we’ll leave it out. The probability in the
numerator 1s

/ (1— %) f (@) dif (v) F (v)

e The event the consumer didn’t trade with A has probability

%(/01(1—@)172(@”(@)@)

which by the rule for conditional probability gives

J, (1=0) f (8) dif (v) F (v)
LN (1—0) F2(3) f (3) do

Pr (v|failed to trade with A) =
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e Notice that if we integrate across all possible values v for firm B

we get o
/0 / (1-0) £ (5)dif (v) F (v) dv =
1 /1 1

([ 0-vsafare

integrating by parts gives

([ a-or@a o}

1

5/0 F*(v) (1 —v) f(v)dv

which shows that this conditional probability distribution inte-
grates to 1.

e Now that we have the density, we can find the expectation of v at
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firm B conditional on failing to trade with A from the formula

f (1—2) f(0)doF (v) f (v) dv
0 2f0 (1—2)F2(0) f(v)do

Now the click through rate on the lower slot is just the proportion
of all the buyers whose search costs are less than V5 who fail to
trade when they visit the firm in the top slot, i.e.,

Ty = (1-V1)G(Va)

Now we’ll use the generic method to work out the bidding rule

The payoft to the seller - there are a bunch of possibilities - for a
start, we only need to worry about the cases where the seller is
the high bidder, or the second high bidder. This bid is submitted
at the very beginning before anything is learned about the other
bidders, so being the high bidder involves two cases where each of
the other two bidders is the second high bidder.
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e for example, the values of the bidders might be v, v and v”, in
descending order. The probability this happens is f (v') - f (v') -
f (v"") and in this case the payoff of the high bidder is

Ty (v—>b(")).

e In order to take the expectation across all possibilities, we need to
start with these, so we’ll get

/ov /o Ty (v—b(2)) f(0)dof (v')dv' =

/ Ty (v — b)) F (@) f (W) dv

0

since each of the other bidders could play the role of the second
high bidder, we need to take 2 of these, one for each of the other
bidders.

e then there is the case where our bidder is the second high bidder,
say v/ > v > 0"
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e now, take one of the other two bidders to play the role of v and
sum to get

/ Ty (v —b (") f (W) &' f (o) do" =

(1 F(v)) / b)) f () do.

e Again, there are two different bidders who could play the role of
the high bidder.

e Now we can put it together to make the payoff 2 times

/OU Ti(v—00"))F @) f@)du+

(1 F(v)) / (o - b)) f () dof
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This has to be larger than

/O” Ty (v=b () F (') f (v') dv'+

(1—F@DL%&@—6@%f@3m“

for all vand ©. The first order condition for bidding is

Ty (0~ b(0) F (0) f (v) + (1 F (0))Ts % (v — b(0))) f (v) =
f@{[ﬁaw—bwwfawm/

which gives the following result

_Jy (o =0 (") f (V) dvf
(v—">0(v)) = lg‘(v)T1+(1_F(,U))T2
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1.9 Applications outside auction theory

e (Klemperer) suppose two parties are involved in a lawsuit. The
party that wins the lawsuit gets utility that is 6; higher than it
does when it loses (the payoff to losing is normalized to zero).
These payofts are private and drawn from a common monotonic
distribution F’

e cach party spends b; defending itself and the party that spends the
most wins the lawsuit

e under standard rules (in the US) each party pays its own legal fees,
so the winner gets 6; — b;

e could expenditures on legal fees be reduced by forcing the losing
party to pay the winner some fraction of the loser’s expenses? what
about forcing the loser to pay some fraction of the winner’s legal
expenses, should there be a minimum legal expenditure required
to win the case?

e the key insight is that the existing legal system is equivalent from
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a strategic viewpoint to an all pay auction - the party who spends
(bids) the most wins the case (trades) but all parties pay what they
spent (bid).

total expected legal expenditures are equivalent to the seller’s rev-
enue in the auction problem

the minimum expenditure requirement (for example forcing lit-
gants to be represented by lawyers) is equivalent to the reserve
price in the auction

suppose first that there is an equilibrium in which parties expen-
ditures are increasing functions of their gains 6, under the existing
rules a party whose gain is exactly equal to the minimum expendi-
ture requirement cannot gain by litigating, nor can they lose since
they receive the default payoft 0 by spending nothing, so the rev-
enue equivalence theorem implies that expected legal expenditures
are

) / F o) [9 1 ;lz 9()9)] F' (6) do (8)
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while parties expected expenditures are equal to the equilibrium
legal expenses

F(@)H—/GF(s)ds

legal expenditures go to lawyers, so assuming that objective of the
legal system is to maximize lawyer income, the optimal expenditure
requirement is to set r such that

1—F(r)
F (r)

as in the optimal selling mechanism,

fr'_

on the other hand, if the objective is to maximize expected gains
to litigation less expected expenditures (and assuming the virtual
valuation is increasing), the reserve price 0 satisfies at least the
necessary condition for optimization (just check the derivative of
the payoff evaluated at » = 0.

what about having the loser pay a portion of his own expenses to
the winner as an additional penalty
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for simplicity assume the loser pays the winner whatever the loser
actually spent litigating the case

assume that the equilibrium bidding strategy is increasing, then
the party with the highest valuation will win the case. Let s the
minimum expenditure required to litigate the case. A litigant who
spends exactly s will win and get his value 6 (without any transfer
from the other player) if the other player decides not to contest

on the other hand, if the other player decides to contest, the litigant
who makes the minimum expenditure s will lose for sure and be
forced to pay 2s, so the expected payment is

F(r)ys+(1—F(r)2s=s+(1—-F(r))s

which should equal F' (r)r in order that the marginal participant
get exactly 0 surplus

then by the revenue equivalence theorem, a legal system with min-
F(r)r

2—F(r)

penditure to the winner yields the same expected expenditures as a

imum expenditure s = in which the loser pays his own ex-
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system where each litigant pays his own costs and where minimum
expenditures are r

2  Multi-Unit Private Value Auctions

e maintaining the assumption that each bidder wants only a single

unit and that each bidders’ valuation is independently drawn from
the distribution F

e suppose that the seller has n > K > 1 units to offer for sale.

e analogously to the case with a single unit, there are a number of
different ways that the good could be allocated

1.

goods could be allocated to the K highest bidders at the high-
est rejected price

. again the K highest bidders at the lowest accepted price
. K highest bidders are allocated, each pays the price that he

or she bids
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4. K objects could be auctioned one at a time to the K highest
bidders

o Revenue Equivalence Theorem for Multiple Units: Suppose that
the auction rules and equilibrium are such that for every vector
6 € O" of valuations, the buyers with the K highest valuations
trade if and only if their valuations are at least r, while buyers
whose valuations are exactly equal to r get zero expected payoft.
Then the expected payment by a buyer of type 6 is given by

/re S ( n[—( 1 ) FrK=1(g) (1 — F (s)5 ™! f (s) ds (9)

e Proof: By assumption, only the highest K valuation buyers will
trade in equilibrium, so if the K*" highest valuation among the
other buyers exceeds 6 the buyer will fail to trade. Conversely,
if this K** highest valuation is less than 6, then the buyer will be
one of the winning bidders provided his own valuations exceeds the
seller’s reserve price 7. The density for the K*" highest valuation
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among the other N-1 bidders is

(") PO F e

(there is one bidder among the other n — 1 who has valuation
exactly equal to s, K — 1 whose valuations exceed s, and n — 1 —
(K —1) — 1 left over whose valuations are lower than s. Then

there are ( n[—( 1

n-1 bidders who we could use as high bidders). So the probability
with which the buyer trades is

) different groups of bidders among the other

QW) - | 9 ( "o ) PRl (s) (1= F ()" f (5) ds

when the buyers’ valuation exceeds r and @ (#) = 0 otherwise.

e incentive compatibility gives
0
P;(0) = / Q (s) sds
0
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2.1

as above, so substituting for Q)" gives the result.

Highest Rejected Bid Auction (uniform price auc-
tion)

suppose the K highests bidders trade and pay the price bid by the
K + 1 highest bidder (that is the highest bid that fails to win) and
that the seller sets reserve price r.

then the price paid by a buyer who trades is independent of the
price that he bids, and bidding true valuation is a weakly dominant
strategy, and a Bayesian equilibrium. Since this bidding function is
monotonically increasing, the buyers with the highest n valuations
will trade as required by the revenue equivalence theorem

since a buyer with valuation r will only trade when the K*" highest
bid among the other buyers is below r a buyer with this valuation
will pay » when he wins and nothing if he doesn’t so his expected
payoff is zero as required by the revenue equivalence theorem to
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2.2

expected payments are given by (9) and seller revenue is just n
times the expectation of this payment over 6

Pay your own bid (Discriminatory Price Auc-
tion)

suppose K highest bidders trade, and each pays his own bid, again
with reserve price r

assume for the moment that this indirect mechanism and the equi-
librium associated with it satisfy the assumptions of the revenue
equivalence theorem

then the expected payment is equal to the bid multiplied by the
probility of winning, or

o) [ (" ) 0 F ) s s =
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/js ( "k 1 ) FrRl () (1= F ()7 f (s) ds

by (9), and this can be solved for the equilibrium bidding rule

3 Approximation

e return to a simple first price auction with asymmetric bidders.
Values are again independently distributed on [0, 1], but in this
section they are not identically distributed, so F; is the probability
distribution for bidder 2’s value.

e As we have discussed before, equilibrium bidding rules are different
in this case

e example bidder 1 has distribution Fj (z) = z (i.e. UJ[0, 1]) while

bidder 2 has distribution F; (z) = 5 (i.e, U |0,2]).
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e verify for yourself that the rules

by (0) = = (2-\/4-392)

30

and

by — = (\/4+392—2)

~ 36
are equilibrium bidding rules by verifying that these both solve the
differential equations that characterize the equilibrium.

e Since by () > by (A) bidder 2 can lose the auction even though he
has a higher value than bidder 1 - so the auction equilibrium is
inefficient in the sense that with strictly positive probability, the
auction will give the good to the wrong person.

e the auction is also not revenue maximizing. Player 2 wins the
auction when
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while revenue maximization requires that player 2 be given the
good when 6y > 0, + % (use the virtual valuations).

so even though the auction could be made efficient by reverting to
a second price auction, this might involve a loss in revenue (I am
not sure, one could probably do the calculation numerically).

This leads to an unpleasant situation in which you know that the
auction you have designed isn’t right, but the only alternatives you
can think of are just different (better in some ways worse in others).

the computer scientists figured out that you could actually quantity
the loss without having to figure out the optimal mechanism

there is a large literature on this (see the article by Jason Hartline
in the readings) - I'll illustrate the methods with surplus and the
first price auction. Here is the theorem

Theorem For any n player first price auction with values inde-
pendently distributed according to the profile {Fi,..., F,}, the
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expected surplus generated by any Bayesian equilibrium of the auc-
tion is at least =% as large as the maximal expected surplus.

for reasons I don’t understand, the computer scientists like to say
the first price auction is a —%5 (or a 1.58) approximation of maximal
social surplus.

To see how they prove this, start with an arbitrary bidder in the
auction whose value is . From the equilibrium she believes is being
played, she has some belief about the probability distribution of the
highest bid of her opponents. Call this distribution function G; -
and notice that it is different for every bidder.

Suppose she bids b in the auction. Then the probability distribu-
tion over the bids of the others, along with her own bid determine
her expected payoft as shown in the following diagram:
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b 0

e now observe a second fact - the expected value of the highest bid
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of the others is

BzfolbdG(b):

bG(b)é—/lG(b)db:

/{1— b)) db

by the (hopefully) now familiar technique of integration by parts.

e what that means is that the expectation of the highest bid of the
others is given by the area above the curve G (b) as in the following
figure
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e finally, the maximum possible surplus that could be earned by a
bidder whose value is 6 is given by the area of the following rect-
angle
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e putting this all together gives a first bit of approximation
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e it kind of looks like the area in blue plus the area in green together
would have almost the same area as the dashed square that rep-
resents the buyer’s potential surplus. This hints at the notion of
approximation.

e if you wanted to prove that the blue area and the green area to-
gether were at least halt the buyer’s surplus, it wouldn’t be so hard.
Here is how you would do it
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9/20 1 (9
/ —dG(b)+/ O4G (1) > 0/2
o 2 6/2 2

e the first inequality follows from the fact that the distribution G is
associated with a Bayesian Nash equilibrium. The equality that
leads to the third line follows because it is a first price auction.

e Notice that this inequality doesn’t depend on the underlying dis-
tributions of buyers’ values, or what Bayesian equilibrium is being
played.

e this is the method of approximation. The only complication is that
the approximation isn’t very good. It could obviously be tightened
because the term that appears in the first integral is strictly larger
than g. Since we want to use this in the real approximation we are
looking for we can go a step further.
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e Theorem: (Hartline) If a bidder has value 6 and bids b as part
of a Bayesian Nash equilibrium, then Q (b) (§ — b) + B > €14

e

e Proof: The expected payoff to the bidder in a Bayesian equi-
librium is at least as large as her payoff when she uses any other
strategy. Focus on the strategy that draws a random outcome from

the interval [O, 6219] using a mixed strategy that uses a distribu-

tion with density ﬁ (in other words, the probability with which

the bidder bids something less than or equal to b using this strat-

~ 6;1 ~
egy is fob %. (Verify for yourself that fo e ? % = 1 so that this

is a proper density).
Now following the logic above

Q) (6 —b)+B>

/Oeele{/obbﬁdpr/beel@{(e—é) +b} %dg} dG (b) +



6_19 e—le 1
/ {/ 1d6+b} dG (b) +/ bdG (b) =
0 b =19

e — 1
e

6.

e this theorem provides a tool to get the result we are more interested
in.

e Let b; (#) be an arbitrary bidding rule for bidder ¢ in an auction
where values are independently distributed according to the distri-
bution functions {F1y, ..., F,}. Suppose the F; are all continuously
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differentiable, in particular so that no two 6; can be the same with
positive probability. Suppose the seller in a first price auction has
zero cost. Suppose {¢;},_; . is the allocation rule supported
by awarding the good to the ﬁerson who submits the highest bid.
Then the expected surplus generated by the auction is

/~~/V(0)dF1...an:/~-~/i:qz-(9)9idF1...an
:i/ulféi%anwu@>+wim@m»dﬂ.”ma

:/m/zn:q’i(e)bi(@i)dﬂ...an+

=1

n

/”:/E:Qdﬁﬂﬁ—bﬂﬁndﬂ.”ﬂ%

=1
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In words, the expected surplus in an auction is always equal to
expected revenues of the seller plus the sum of the expected payofts
of the buyers.

Maximal expected surplus is

max / /Zqz )0, dFy ... dF,

{Qz i=1,n

subject to the constraint that ¢; (6;) € RT; > ¢ (6;) < 1 and
q; (0) = 1if b; (6;) > b; (0;)Vj # 1.

Now we get the main approximation theorem.

Theorem (Hartline) The expected surplus generated by the auc-
' ¢—1 times the maximal expected surplus.

Proof: We start with the result of the value approximation theo-
rem given above

A e — 1

Qb (0)) (0; —b; (0)) + B; > 0;

€
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Suppose that ¢ () is the outcome function that maximizes ex-
pected surplus (obviously this outcome function is the one that
gives the good to the buyer with the highest value - as you recall
this isn’t what the auction does).

Trivially since ¢} (6)is always less than or equal to 1, we must then
also have (nothing deep, we are just shrinking one term on the left,
but the whole thing on the right)

e — 1

Q (bi (0)) (6; — b; (9)) + Big; (0) > Oig; (9).

Now sum these terms over ¢ and take expectations with respect to
the (9@

n

Z/o Q (bi (6:)) (0; — b) dF; (6;) +

1=1

n

/.../Zéiqf (0)dF, ...dF, >

1=1
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1 n
: /.../}:eiq;(e)dFl...an.
e
1=1

Notice that the first term on the left is the sum of the expected
payofts of the buyers, while the term on the right is the maximal
expected surplus.

The last step comes from the following simple logic
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where the last term is the expected revenue in the auction. The
bottom line is that the sum of the expected payofls to buyers plus
the expected revenue to the seller is always at least 621 of the
maximal expected surplus.

Interdependence

players types ©,; aren’t their values, they are just signals that pro-
vide information about value - assume types for each player are
drawn from closed intervals.

player ¢’s value for the object being sold in the auction is
Ui(el,...,en)

in case the buyer’s value also depends on information possessed by
the seller, let 6y be the seller’s type, so that

vi(ﬁo,...,ﬁn)

0-68



In either case, v; is assumed to be non-decreasing in each of its
arguments, and strictly increasing in 6;

the distribution of values is given by F' (61, ..., 0,) with continuous
and differentiable density f (61,...,60,)

an environment is symmetric if v; = v; = v for all ¢ and j and if
the density is symmetric in the sense that if the vectors 6 and ¢’
are permutations of one another, then f (6) = f (¢')

define
0 (61y) = E {uwi,e_@-) 6, max 6; — y}

JFu

Theorem: In a second price sealed bid auction in a symmetric
environment, there is a Bayesian Nash equilibrium in which all

bidders use the the bidding rule b (6;) = v (6;, 6;).

Proof: The payoff a buyer gets when his type is 6 and his bid is
b and all other bidders are using the rule b (6;) = v (6;,6;) is given
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by
b—l(b’)
/0 (0 (8:,9) = b(y)) g (4105 dy

where g (y]6;) is the density of the maximum value of the §_;. Then
by substitution, this is

b= (b')
/0 (v (0i,9) —v (y,9)) g (y|6:) dy.

Since b is monotonically increasing in a symmetric environment,
b~! is monotonically increasing, so raising the bid results in the
integral being taken over larger values of y. Again, using mono-
tonicity, y > 6; if and only if v (y,y) > v (0;,y), so, for example,
if o’ > v(0;,0;) the intergral will include an interval along which
v (0;,y) — v (y,y) is negative, and this interval could be eliminated
by reducing the bid. Exactly the same argument shows that bids
below are dominated.

In a button auction (often referred to as an English auction) price
starts at 0 and rises continuously.
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Each bidder begins the auction with his/her finger pressing down
on a button. A bidder who takes their finger off the button is
considered to be out of the auction and can no longer participate.
Everyone observes when someone else takes their finger off the but-
ton and the price that prevailed when this event occurs.

The auction ends when the second last bidder takes their finger
off the button, at which point the price stops rising. The winning
bidder is the remaining bidder who pays whatever the price was
when it stopped going up.

This is a dynamic game in which at every instant, a bidder who
hasn’t yet taken their finger off the button sees a sequence of prices
Dk, Pk—1,---,P1 at which the previous bidders dropped out of the
auction. These are ordered so that pr > pr_1 > ... and so on. So
the k'™ bidder who dropped out of the auction did so at price py.

A strategy for a bidder is a plan about when to take their finger
off the button. Think of the bid b as the price at which the bidder
plans to take her finger off the button.
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Define the following bidding rules

bo (0i) = v (0:,0:,...,0;).

what that means is that the bidder plans to keep her finger on the
button as long as the price is less than by (6;) if no one drops out
in the interim.

since v (6;,0; . ..,0;) is strictly increasing by assumption, by (6;) is
strictly increasing, so it has an inverse by .

then, if the first bidder to drop out drops out at price p;, define
b1 (917 {]31}) = v (927 Oiy - bal (ﬁl))

Here v (6;,. .., by ! (p1)) means that the last of the n arguments in
v (0;,...,0;) is replaced with by ' (p1).

now using these two bidding rules, we can define the other bidding
rules inductively.
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e suppose that k bidders have dropped out at prices p1 < ps < ... <
pr, that we have defined the monotonically increasing bidding rule
bi (0;,D1,---,Pk), and that another bidder drops out at price Py 1.

Then define

br+1 (0i, D1, - Prs1) = v (0iy -, 05,05 (P1) 5+ - bp 2y (Pr) by (Prs)) -

e Theorem: The bidding rules b* defined above constitute a (sym-
metric) perfect Bayesian equilibrium for the english auction.

e Proof: Consider any history (p1, ..., px) in which bidder i still has
her finger on the button, and suppose that all the other bidders

are using the strategy {by} as described above. Let 3 be the k"
lowest type among the types of the other players. Suppose the
current price is p. Then the value of the good to the bidder with
value 0; is

E{’U(Qi,@—z‘) ly1 =by" (1), Yk = b " (Br) s Ykt1 > by (D), Yn—1 > by (p)} >

v (ei,bgl (P), - b (p) by (1) 5. ., b) (ﬁk))

where in this expression the term b;l (p) appears n — k — 1 times.
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o if 0, > b,;l (p), then the previous expression is larger than

4.1

v (b (p), by (0)s-o by (0) b (Br) .- by (Br)) =

so the payoftf to keeping her finger on the button is larger than
dropping out and getting zero. Conversely, if 0, < b,;l (p) then the
expected value is less than the current price, and dropping out is
a best reply.

Affiliation

When the joint distribution of types has a density f, a special class
of distributions can be described

Definition: Variables (61,...,60,) are said to be affiliated if for
any pair of vectors 6 and 6’

fFOVO)FONG) = f(0)f(0)

where V0’ = {max [01,0],...,max [0,,0]]} and ONO' = {min [01,07], ...,
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