
1 Theory of Au
tions

1.1 Independent Private Value Au
tions

• for the moment 
onsider an environment in whi
h there is a single

seller who wants to sell one indivisible unit of output to one of n

buyers whose valuations are private, a buyer whose valuation is θ

who trades at pri
e p gets surplus θ− p the seller gets surplus p in

this 
ase. Ea
h buyer's valuation is independently drawn from a

distribution F on [0, 1]. F is 
ontinously di�erentiable and stri
tly

in
reasing.

• au
tions are implemented using a variety of indire
t me
hanisms

1. in a �rst pri
e au
tion ea
h buyer submits a bid and the high

bidder pays his bid, se
urites au
tions, treasury bills, pro
ure-

ment, timber au
tions

2. in a se
ond pri
e au
tion ea
h buyer submits a bid, the high

bidder wins and pays the bid of the se
ond high bidder, ebay,


learing house
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3. english au
tion - the au
tioneer asks for a starting bid, then

asks for a volunteer to raise the bid, he 
ontinues to do this

until no one o�ers to raise the bid, the last bidder o�ered to

raise the bid wins and pays that bid

4. english button au
tion - ea
h bidder who wants to bid begins

by pressing and holding down a button. The pri
e is then

raised 
ontinuously and ea
h bidder releases the button when

the pri
e gets too high. When there is only one bidder left

holding down a button, that bidder wins and pays the pri
e

where the last bidder dropped out

5. dut
h au
tion - the pri
e falls 
ontinuously until some bidder

yells stop. The yelling bidder wins and pays the pri
e at whi
h

the pri
e stopped. Dut
h �ower au
tions

6. all pay au
tion - all bidders submit bids, the high bidder wins

but all bidders pay what they bid.

7. Cremer M
Lean au
tion - a se
ond pri
e au
tion in whi
h all

bidders who want to parti
ipate have to agree ex ante to pay

a fee (that might depend on the bids of the other bidders)
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• Sometimes (in
reasing virtual valuations, iid valuations) the se
ond

pri
e au
tion will be optimal.

• Even when au
tions aren't optimal for the seller, many of them are


omparable in terms of revenue.

• The following theorem allows you to 
ompare all of these au
tions

but the last one when valuations are iid.

1.2 The optimal selling me
hanism

An out
ome fun
tion for the seller is a spe
i�
ation of what the seller

wants to happen for ea
h pro�le of valuations θ = {θ1, . . . , θn} . An

out
ome 
onsists of three things, a pri
e that ea
h buyer pays if he gets

the obje
t for sale, a pri
e he pays if he doesn't get it, and the probability

with whi
h he gets the obje
t. These depend on the pro�les of valuations,

so lets write them as qi (θ) , pi (θ) and p′i (θ), where pi (θ) is the pri
e that

buyer i pays when he gets the good, and p′i (θ) is the pri
e he pays if

he doesn't get the good, while qi (θ) is the probability that i is a
tually

given the good.
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For example, suppose the seller wants to run the following me
hanism

- ea
h buyer pays a fee κ to parti
ipate in the me
hanism, then one of

the buyers is 
hosen at random and given the good in ex
hange for a

�xed fee p. Then the seller would like to 
hoose the fun
tions that are

independent of θ as follows:

qi (θ) =
1

n

pi (θ) = p

and

p′ (θ) = κ.

Hopefully you 
an see that though this represents an out
ome fun
tion,

the seller 
an't really expe
t it to happen. First of all, no buyer whose

value is below p will parti
ipate. Even if their values are above p they

will only parti
ipate if

(θ − p)
1

n
≥ κ.
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The seller 
an do anything she likes at this point as long as

∑

i

qi (θ) ≤ 1.

She 
an assign any pro�le of payments she likes, in
luding negative pay-

ments in p (θ) and p′ (θ).

The payo� to buyer i from any out
ome θ is then (θi − pi (θ)) qi (θ)−
(1− qi (θ)) p

′
i (θ) whi
h allows us to 
ompute the expe
ted payo� asso
i-

ated with the me
hanism for ea
h of the buyers

E {(θi − pi (θ)) qi (θ)− (1− qi (θ)) p
′
i (θ)}

∫

· · ·

∫

(θi − pi (θi, θ−i)) qi (θi, θ−i)−(1− qi (θi, θ−i)) p
′
i (θi, θ−i)

∏

i′ 6=i

dF (θi′) .

(1)

On
e the seller has de�ned the three fun
tions, she 
an use this payo�

fun
tion to determine whether or not the au
tion is worth parti
ipating

in, and whether it is in
entive 
ompatible.

As for the outside option, we don't have to 
ompute any 
ompli
ated

arg max in the au
tion, we 
an just use the fa
t that a seller who doesn't
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like the bids that some buyer submits 
an just refuse to trade with the

buyer. So the outside option value for ea
h buyer 
an be set to 0 for every

buyer independent of type. Individual rationality simply means that (1)

is non-negative for ea
h buyer, and for ea
h of the buyer's types.

Ea
h me
hanism like this has a 
orresponding redu
e form represen-

tation as follows:

P (θi) = E

{

n
∑

i=1

pi (θ) qi (θ) + (1− qi (θ)) p
′
i (θ)

}

. (2)

So all we need to do to �nd the best way to sell is to maximize the

expe
tation of (2) subje
t to the in
entive 
ompatibility and individual

rationality 
onstraints de�ned by (1).

Correspondingly, we 
an write

Qi (θi) = Eqi (θi, θ−i) .

The 
olle
tion {Pi (θi)Qi (θi)}i=1,n is sometimes 
alled the redu
ed form

me
hanism.
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Buyer i's expe
ted payo� from parti
ipating in the me
hanism is

Qi (θi) θi − Pi (θi) .

If the au
tion me
hanism is in
entive 
ompatible, then

Qi (θi) θi − Pi (θi) ≥ Qi (θ
′
i) θi − Pi (θ

′
i) .

Lets assume that Qi and Pi are di�erentiable. Then this requires

Q′
i (θi) θi = P ′

i (θi) . (3)

This expression is an identity (i.e., it is true for all values of θi, so from

basi
 
al
ulus

Pi (θi) =

∫ θi

0

P ′
i (t) dt =

∫ θi

0

Q′
i (t) tdt =

Qi (θi) θi −

∫ θi

0

Qi (t) dt
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(whi
h is just integration by parts). There is no 
onstant term at the be-

ginning of this expression be
ause Pi (0) > 0 would mean the me
hanism

did not satisfy individual rationality for a buyer of type 0.

If two fun
tions are identi
ally equal, so are their derivatives, so

P ′′ (θi) = Q′′ (θi) θi +Q′ (θi) .

What is important about this is the se
ond order ne
essary 
ondition

Q′′ (θi) θi − P ′′ (θi) = −Q′ (θi)

will be satis�ed if the me
hanism {pi (θ) , qi (θ)}i=1.n satis�es Q′ (θ) > 0

(that is, higher types trade with higher probability).

Assuming (just to make life simple) we treat all the buyers the same

way so that the fun
tions Pi and Qi are all the same, we 
an rewrite the

seller's revenue (2) as

n

∫ 1

0

P (θi) f (θi) dθi =

n

∫ 1

0

{

Q (θi) θi −

∫ θi

0

Q (t) dt

}

f (θi) dθi =
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n

∫ 1

0

Q (θi) θidF (θi)− n

∫ 1

0

∫ θi

0

Q (t) dtf (θi) dθi =

n

∫ 1

0

Q (θi)

(

θi −
1− F (θi)

f (θi)

)

f (θi) dθi =

∫ 1

0

· · ·

∫ 1

0

n
∑

i=1

{

qi (θi, . . . , θn)

(

θi −
1− F (θi)

f (θi)

)}

f (θ1) . . . f (θn) dθ1 . . . dθn.

(4)

In this series of inequalities, the fourth one follows by integrating the

previous expression by parts.

Now the 
onstraint on qi is that for every pro�le of types θ1 . . . , θn,

the sum

∑n
i=1 qi (θi) should be less than or equal to one. This means that

for every pro�le of types, the sum is a weighted average of the virtual

valuations of ea
h type. If for some pro�le of types, none of these virtual

valuations are positive, then this expression suggests that setting all the

qi to zero is the best thing to do. While if one of more of the virtual

valuations is positive, then the best thing to do is to set qi = 1 for the

largest su
h virtual valuation.
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This tells us exa
tly how to maximize revenue. Choose and r su
h

that r = 1−F (r)
f(r) so that the virtual valuation is exa
tly equal to 0 when

it is evaluated at r. For ea
h pro�le of values (θ1, . . . , θn), if the highest

value for θi is less than or equal to r, don't sell to anyone, otherwise

sell for sure to the highest bidder. (these assertions follow from the

monotoni
ity of the virtual valuation fun
tion). As we will show in the

next se
tion, this is exa
tly what happens when you run an au
tion with

reserve pri
e r. Any pri
ing rule you use to resolve the au
tion will work

provided it gives

P (θi) = Q (θi) θi −

∫ θi

0

Q (t) dt

for ea
h θi.

1.3 Revenue Equivalen
e Theorem

• Revenue Equivalen
e Theorem: Suppose that buyer valuations are

identi
ally and independently distributed a

ording to some known

distribution F whose support is an interval in R and for whi
h θ−
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1−F (θ)
f(θ) is an in
reasing fun
tion. Suppose further that the indire
t

me
hanism that guides trade has an equilibrium in whi
h the buyer

with the highest valuation trades if and only if his valuation is at

least r, and that a buyer with valuation r gets an expe
ted payo�

equal to zero. Then the seller's expe
ted revenue from this indire
t

me
hanism is

n

∫ 1

r

Fn−1 (θ)

[

θ −
1− F (θ)

F ′ (θ)

]

F ′ (θ) dθ

Furthermore, ea
h buyer's expe
ted payment is given by

P (θ) = Fn−1 (θ) θ −

∫ θ

r

Fn−1 (x) dx

• Proof: This follows the me
hanism design argument in the previous

le
ture, but I give it here for 
ompleteness

• ea
h buyers' expe
ted payo� is given by

Qi (θ) θ − Pi (θ)
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where Qi is the probability with whi
h the buyer trades and Pi is

the expe
ted payment the buyer makes to the seller.

• by assumption the indire
t me
hanism has an equilibrium in whi
h

the buyer with the highest valuation trades, so this trading prob-

ability is the same for every one and equal to Fn−1 (θ) for buyers

whose valuations at at least r, and it is equal to zero otherwise

• sin
e it 
annot pay for a buyer to behave as if his type were di�erent

from his true type in any equilibrium, it must be that

Fn−1 (θ)
′
θ = P ′

i (θ)

for every buyer whose valuation is at least r

• Integrating by parts gives

Pi (θ) =

∫ θ

0

Fn−1 (s)
′
sds = Fn−1 (θ) θ −

∫ θ

r

Fn−1 (s) ds (5)

• this gives the result for buyers' expe
ted payo�. The seller's ex-

pe
ted revenue is the sum of the expe
ted revenue for ea
h buyer,
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or

n

∫ 1

0

Pi (θ) dF (θ) = n

∫ 1

r

{

Fn−1 (θ) θ −

∫ θ

r

Fn−1 (s) ds

}

dF (θ)

• be
ause Pi (t) = 0 if t < r.

• to integrate this by parts write it �rst as

n

{

∫ 1

r

{

Fn−1 (θ) θ
}

dF (θ)−

∫ 1

r

∫ θ

r

Fn−1 (s) dsdF (θ)

}

.

In the se
ond term in the bra
kets, think of

u (θ) =

∫ θ

r

Fn−1 (s) ds

and

dv (θ) = dF (θ)
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so that the se
ond double integral 
an be written as

F (θ)

∫ θ

r

Fn−1 (s) ds

∣

∣

∣

∣

∣

1

r

−

∫ 1

r

Fn (θ) dθ =

∫ 1

r

Fn−1 (θ) dθ −

∫ 1

r

Fn (θ) dθ.

Re
ombine this with the �rst integral to get

n

{
∫ 1

r

{

Fn−1 (θ) θ
}

dF (θ)−

∫ 1

r

Fn−1 (θ) dθ +

∫ 1

r

Fn (θ) dθ

}

=

n

∫ 1

r

Fn−1 (θ)

[

θ −
1− F (θ)

F ′ (θ)

]

F ′ (θ) dθ.

1.4 Using Revenue Equivalen
e - First Pri
e Au
tion

• in the �rst le
ture, we showed an example of a �rst pri
e au
tion

that possessed an equilibrium in in
reasing bidding rules. Now
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let us just suppose that su
h an equilibrium exists more generally.

Then the expe
ted payment is equal to the bid multiplied by the

probability of winning, i.e.,

Pi (θ) = Qi (θ) bi (θ) = Fn−1 (θ) bi (θ)

so

bi (θ) = θ −

∫ θ

r
Fn−1 (s) ds

Fn−1 (θ)

(6)

for ea
h θ ≥ r

• if all bidders use this bid fun
tion, the bidder with the high valua-

tion will win be
ause this fun
tion is in
reasing, it satis�es in
entive


ompatiblity, so no bidder using it would prefer to a
t like a bidder

with another valuation. Che
k for yourself that is doesn't pay to

bid pri
es that no other bidder would ever bid and that a buyer of

valuation r gets zero expe
ted payo�

• in other words, the revenue equivalen
e theorem 
an be used to


al
ulate the equilibrium bidding strategy in a �rst pri
e au
tion.
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1.5 Se
ond Pri
e Au
tion

• in a se
ond pri
e au
tion, there is an equilibrium in whi
h ea
h

buyer bids his true valuation. This bidding strategy is in
reasing,

so the buyer with the highest valuation will trade in a se
ond pri
e

au
tion - a buyer who bids the reserve pri
e will only win if no

other buyers bid, but then he gets zero surplus

• thus from the revenue equivalen
e theorem a �rst and se
ond pri
e

au
tion in whi
h the reserve pri
e is the same give the seller the

same expe
ted revenue.

• furthermore, the expe
ted payment made by a bidder of type θ

in the se
ond pri
e au
tion is equal to the probability of winning

multiplied by the expe
tation of the se
ond highest valuation 
on-

ditional on θ being the highest valuation.

• the from (5), it follows that the equilibrium bid in the �rst pri
e

au
tion for a bidder of type θ is equal to the expe
ted value of the

se
ond highest valuation or r whi
hever is higher, 
onditional on θ

0-15



being the highest valuation (just integrate by parts)

∫ r

0
(n− 1)F (s)n−2 f (s) rds

Fn−1 (θ)
+

∫ θ

r
(n− 1)F (s)n−2 f (s) sds

Fn−1 (θ)
=

∫ r

0
(n− 1)F (s)n−2 f (s) rds

Fn−1 (θ)
+

∫ θ

r
(n− 1)F (s)n−2 f (s) sds

Fn−1 (θ)
=

rF (r)n−1

Fn−1 (θ)
+

F (s)
n−1

s
∣

∣

∣

θ

r
−
∫ θ

r
F (s)

n−1
ds

Fn−1 (θ)

= θ −

∫ θ

r
Fn−1 (s) ds

Fn−1 (θ)
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1.6 All-Pay Au
tion

• let us use the te
hnique we employed for �rst pri
e au
tions to


ompute the equilibrium in the all pay au
tion, suppose there is an

equilibrium in in
reasing bidding strategies so that the equilibrium

out
ome is always that the buyer with the high valuation ends up

trading.

• sin
e everyone pays whether or not they win the obje
t, the ex-

pe
ted payment is equal to the bid, i.e.,

b (θ) = Fn−1 (θ) θ −

∫ θ

r

Fn−1 (s) ds

• Noti
e that in ea
h of these appli
ations, we know the allo
ation

rule qi but we don't know the rules pi or p
′
i be
ause they have to

be derived from equilibrium play whi
h di�ers in ea
h of the three

au
tions. The theorem says that this equilibrium play, whatever it
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is, must support an expe
ted pri
e P that satis�es

P (θ) = Fn−1 (θ) θ −

∫ θ

r

Fn−1 (x) dx.

• thats why we were able to derive the equilibrium bidding fun
tions

from ea
h of the last equation. On
e we have those fun
tions, we


an dedu
e the out
ome fun
tions asso
iated with ea
h.

• For ea
h of the three au
tions we have

qi (θi, θ−i) =

{

1 θi > θj∀j 6=i

0 otherwise.

• or if you think that F has atoms, q (θi) =
1

#{j:j≥j′∀j′ 6=j} .

• In the se
ond pri
e au
tion, we have p′i (θi, θ−i) ≡ 0 while

pi (θi,θ−i) = max
j 6=i

{θj}
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• In the �rst pri
e au
tion p′i is always 0 while,

pi (θi, θ−i) = θi −

∫ θ

r
Fn−1 (s) ds

Fn−1 (θ)
.

• Finally for the all pay au
tion

p (θi, θ−i) = p′ (θi, θ−i) = Fn−1 (θ) θ −

∫ θ

r

Fn−1 (s) ds.

1.7 Identi�
ation

• bidder types are unknowns from the perspe
tive of an outside ob-

server, however they are asso
iated with whatever the outside ob-

server 
an see

• the theory starts with two pie
es of information, and au
tion for-

mat, 
all it A and a family F of type distributions that the modeler

believes are possible. In this le
ture and se
ond pri
e au
tion is an

au
tion format, while we believe that types are i.i.d and with ea
h
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individual bidders type des
ribed by some distribution fun
tion F

on [0, 1] for whi
h F has a stri
tly positive density at ea
h point in

[0, 1]

• an outside observer might have histori
al data on winning bids in

a �rst pri
e au
tion, or maybe the observer 
an re
ord all the bids

in an au
tion. This histori
al data involves some distribution G of

observable information.

• Bayesian equilibrium play in the au
tion A indu
es some distribu-

tion on the observables denoted by ΨA : F → G where G is the

image of F indu
ed by the transformation ΨA - in words, G is all

the distributions of observables that you 
ould possibly get through

equilibrium play for some distribution F ∈ F .

• Identi�
ation is the problem of working ba
kwards from G to F .

• Formally, the type distribution asso
iated with some au
tion A

is said to indenti�able if for every G ∈ G there is a unique type

distribution F su
h that G = ΨA (F ) .
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• in this se
tion we 
onsider two questions - are type distributions

identi�able in the se
ond pri
e au
tion if you have observed a his-

tori
al series of transa
tions pri
es, and, are type distributions

identi�able in the �rst pri
e au
tion if you have observed all the

bids.

• to start, suppose you have observed a sequen
e of au
tions and

re
orded the bids that were made by di�erent bidders, i.e., if you

have held T au
tions, ea
h of whi
h had n bidders, then you have

observations on nT di�erent bids. You believe the values behind

these bids are independently drawn from some unknown distribu-

tion F .

• an e
onometri
ian has estimated that the observed distribution of

bids is given by G, a 
umulative distribution fun
tion that we'll

assume has a density. The problem is to tell him/her what the

unknown distribution of values is assuming that the bidders are all

playing equilibrium strategies.

• As you now know, the equilibrium strategies depend on the type
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of au
tion the data 
omes from

• for a se
ond pri
e au
tion this is easy if G (b) is the proportion of

all bids that were less than or equal to b then that is also the pro-

portion of values that are less than or equal to b - the distribution

of bids is the distribution of values

• next time the e
onometri
ian arrives you learn they misinterpreted

the data. The nT observations that were used to estimate G

weren't all the bids, they were just nT observations on the pri
es

that people paid after winning the au
tion - they are pri
es from

a se
ond pri
e au
tion not the bids. Can you still identify the

distribution of values?

• The result is as follows, if G (p) is the distribution of trading pri
es

in the se
ond pri
e au
tion (the proportion of au
tions for whi
h

the winning bidder paid something less than or equal to p, then,

the proportion of bidders in the au
tions whose values are less than
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of equal to p is given by solving the following equation for F̃

G (p) = n (n− 1)

∫ F̃

0

tn−2 (1− t) dt.

Noti
e that sin
e the right hand side is stri
tly in
reasing in F̃ , it

has a unique solution for every p.

• to see this, start with the observation that in any parti
uar se
ond

pri
e au
tion, the trading pri
e is the se
ond highest value among

all the bidders who were there. If the distribution of values were

equal to F , then the probability that the se
ond highest value is

equal to some winning pri
e b is
n (n− 1)F (b)

n−2
(1− F (b)) f (b)

So the distribution F supports a 
umulative distribution

G (b) = n (n− 1)

∫ b

0

F
(

b̃
)n−2 (

1− F
(

b̃
))

f
(

b̃
)

db̃
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• G (b) is given by the data we have, so we have to try to �nd an F

that will support this relationship.

• now do the integration on the right hand side by a 
hange of vari-

able in whi
h t = F
(

b̃
)

and dt = f
(

b̃
)

db̃ so it equals

n (n− 1)

∫ F (b)

0

tn−2 (1− t) dt

• This gives the property that F has to satisfy so that it would

support the observed distribution of bids - whi
h is the result we

want.

• Case 2: G is the distribution of bids in a �rst pri
e au
tion.

• In this 
ase the result is that if the proportion of bids that is less

than or equal to p in a series of identi
al �rst pri
e au
tions with

N bidders then, F must satisfy

G (p) = F

(

p+
G (p)

g (p) (n− 1)

)

.
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• what this says is that you �nd F (x) by �nding px su
h that

x = px +
G (px)

g (px) (n− 1)

then taking F (x) as G (px). Noti
e that the fun
tion p+ G(p)
g(p)(n−1)

is 
ompletely determined by the data you have.

• Here is the argument: the expe
ted payo� to a bidder in a �rst

pri
e au
tion is

(θ − b (θ′))Fn−1 (θ′)

where θ′ is the value that the bidder pretends to be.

• if b is an equilibrium bidding strategy, then this expe
ted payo�

will be maximized at v′ = v, whi
h gives the �rst order 
ondition

b′ (θ)Fn−1 (θ) = (n− 1) (θ − b (θ))Fn−2 (θ) f (θ)

whi
h you 
ould write as

1 =
(θ − b (θ)) f (θ)

F (θ) b′ (θ)
(n− 1) (7)
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• now for any bid b the data says that the probability that any bidder

will bid something less than or equal to b̃ is

G
(

b
(

θ̃
))

= F
(

b−1
(

b
(

θ̃
)))

= F
(

θ̃
)

where θ̃ is the type of bidder who bids b̃ so that g
(

b
(

θ̃
))

b′
(

θ̃
)

=

f
(

θ̃
)

or

g
(

b̃
)

=
f
(

θ̃
)

b′
(

θ̃
)

evaluated at θ̃ = b−1
(

b̃
)

.

• Now we 
an substitute these last two observations into (7) and

evaluate them at θ̃ to get

1 =
(

θ̃ − b̃
) g

(

b̃
)

G
(

b̃
) (n− 1)
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whi
h means that

θ̃ = b̃+
G
(

b̃
)

g
(

b̃
)

(n− 1)
,

This expression just says that if we observe a bid b̃, then the type

of the player who submitted it must be b̃ +
G(b̃)

g(b̃)(n−1)

. This is

the inverse fun
tion for the bidding rule expressed in terms of the

observables G rather than the unobservables.

• the impli
ation of this is that the proportion of bids that are less

than or equal to b̃, G
(

b̃
)

is the same as the measure F

(

b̃+
G(b̃)

g(b̃)(n−1)

)

.

1.8 Position Au
tions

• An sear
h site has a webpage with a lot of tra�
 (like google).

This webpage has two 'slots' at the top for ads. There are three
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�rms who have their own websites with ads on them. Consumers


li
k through the ad slots on the sear
h 
ompany's web to look at

these �rms' ads. Any 
onsumer who visits a �rm web page will

either de
ide to buy the �rm's good, in whi
h 
ase the payo� to

both the 
onsumer and the �rm is 1 (pri
e plays no role here). If

the 
onsumer doesn't buy, the payo� to both the 
onsumer and

�rm is 0.

• ea
h �rm has a quality v whi
h measures the probability that a 
on-

sumer will 
hoose to buy the produ
t after seeing the web page.

Ea
h �rm knows its own quality, otherwise information is in
om-

plete. Ex ante ea
h 
onsumer believes that ea
h �rm's quality is

independently drawn from some distribution F with support [0, 1].

• The sear
h site holds an au
tion in whi
h ea
h of the three �rms

bids the amount they are willing to pay per '
li
k'. A 
li
k o

urs

when a 
onsumer 
li
ks through the link in the sear
h sites slot

and looks at an individual �rm's webpage.

• the highest bidder's link is pla
ed in the top slot - the high bidder
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pays the se
ond highest bid for ea
h 
li
k on its ad. The se
ond

highest bidder's ad is pla
ed in the lower slot, the se
ond high

bidder pays whatever the third highest bidder bid.

• Cli
king on an ad is assumed to be 
ostly - the sear
h 
ost for


onsumer i is si drawn using a distribution G with support on

[0, 1].

• the pro
ess then goes like this - ea
h of the three �rms submits a

bid, say bi. Suppose b1 > b2 > b3. Firm 1 (who bids b1) has their

link pla
ed in the top slot, �rm 2 has their link pla
ed in the lower

slot.

• ea
h 
onsumer de
ides whether or not to 
li
k on one of the links

on the sear
h site's web page.

• when a 
onsumer 
li
ks through the link to �rm i and views �rm

i′s webpage, �rm i makes a payment to the sear
h �rm equal to

whatever pri
e it won in the au
tion, ea
h 
onsumer buys from the

�rm with probability vi.
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• a 
onsumer who 
li
ks through a link and fails to buy 
an try again

at the se
ond slot

• let T1 and T2 be the proportion of 
onsumers who 
li
k on the top

slot. Then the pro�t of �rm 1 is

T1 (v1 − b2)

• the pro�t of �rm 2 is

T2 (v2 − b3)

• �rm 3 earns 0

• The payo� to a 
onsumer with sear
h 
ost s who 
li
ks through

slot i is

vi − s

while the payo� to a 
onsumer who 
li
ks through both slots is

v1 − s+ (1− v1) (v2 − s)
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• Result: There is an equilibrium in whi
h ea
h of the three �rms

bids less than their value in the au
tion, both T1 and T2 are positive

with T1 > T2.

• Lets assume, as we did with standard au
tions, that the bidding

rule that �rms use is a stri
tly in
reasing fun
tion b (v) (whose

range is 
ontained in [0, 1]). If so, the probability that a �rm with

value v wins the top slot is

F 2 (v)

whi
h is exa
tly the same as in the �rst and se
ond pri
e au
tions

we looked at previously. The probability the �rm wins the se
ond

slot is

2F (v) (1− F (v))

• Without knowing what the equiilbrium bidding fun
tion is, we 
an

still address an interesting question. As we look at the page with

two ads displayed, what should we expe
t the quality of the link

in the �rst ad to be?
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• We have to begin with the fa
t that when the �rm starts her sear
h

she already has a bun
h of information, in parti
ular, she 
an see

the names of the �rms in ea
h of the slots, and presumably knows

the identify of the �rm that didn't win a spot. Call the �rms A B

and C. The probability that things work out this way is

∫ 1

0

∫ v

0

∫ v′

0

f (v) f (v′) f (ṽ) dṽdv′dv =

∫ 1

0

∫ v

0

f (v′)F (v′) dv′f (v) dv =

∫ 1

0

1

2

∫ v

0

dF 2 (v′) =
1

2

∫ 1

0

F 2 (v) f (v) dv =

1

6

∫ 1

0

dF 3 (v) =
1

6
.

So all the probability 
al
ulations that follow should be 
onditional

on that. This 
ondition will 
an
el out when we do 
onditional

probability 
al
ulations.
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• The expe
ted quality of �rm A is then

V1 ≡
1
2

∫ 1

0
ṽF 2 (ṽ) f (ṽ) dṽ

1
6

.

• the reason this is interesting is that 
onsumers will only 
li
k on a

slot if the expe
ted payo� ex
eeds their sear
h 
ost. V1 represents

the expe
ted payo� to sear
hing the top slot. This determines the


li
k through rate - T1 = G (V1) - this is the measure or proportion

of 
onsumers whose sear
h 
osts are low enough that they will be

willing to 
li
k through the link in the top slot.

• the 
li
k through rate on the lower slot is more 
ompli
ated. Only


onsumers whose sear
h 
ost is below V1 will ever 
li
k on the

se
ond slot - and only if they fail to trade with �rm A. Even then,

they won't know the quality of �rm A but will be
ome pessimisti


be
ause the know that it is the best of the two �rms.

• this requires �guring out the expe
ted quality of �rm B 
onditional

on having failed to �nd a trade in the upper slot.
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• we'll do this by 
al
ulating the 
onditional density for ea
h value

v of �rm B - re
all from the rule for 
onditional probability

Pr (v|failed to trade with A) =
Pr(v ∩ failed to trade with A)

Pr (failed to trade with A)

• both probabilities should be 
onditional on the out
ome with A in

the top slot, but the 
ondition

1
6 will be in both the numerator

and denominator, so we'll leave it out. The probability in the

numerator is

∫ 1

v

(1− ṽ) f (ṽ) dṽf (v)F (v)

• The event the 
onsumer didn't trade with A has probability

1

2

(
∫ 1

0

(1− ṽ)F 2 (ṽ) f (ṽ) dṽ

)

whi
h by the rule for 
onditional probability gives

Pr (v|failed to trade with A) =

∫ 1

v
(1− ṽ) f (ṽ) dṽf (v)F (v)

1
2

∫ 1

0
(1− ṽ)F 2 (ṽ) f (ṽ) dṽ

.
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• Noti
e that if we integrate a
ross all possible values v for �rm B

we get

∫ 1

0

∫ 1

v

(1− ṽ) f (ṽ) dṽf (v)F (v) dv =

1

2

∫ 1

0

{
∫ 1

v

(1− ṽ) f (ṽ) dṽ

}

dF 2 (v)

integrating by parts gives

1

2

{
∫ 1

v

(1− ṽ) f (ṽ) dṽ · F 2 (v) |10

}

+

1

2

∫ 1

0

F 2 (v) (1− v) f (v) dv

whi
h shows that this 
onditional probability distribution inte-

grates to 1.

• Now that we have the density, we 
an �nd the expe
tation of v at
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�rm B 
onditional on failing to trade with A from the formula

V2 ≡

∫ 1

0

v
∫ 1

v
(1− ṽ) f (ṽ) dṽF (v) f (v) dv

1
2

∫ 1

0
(1− ṽ)F 2 (ṽ) f (ṽ) dṽ

• Now the 
li
k through rate on the lower slot is just the proportion

of all the buyers whose sear
h 
osts are less than V2 who fail to

trade when they visit the �rm in the top slot, i.e.,

T2 = (1− V1)G (V2)

• Now we'll use the generi
 method to work out the bidding rule

• The payo� to the seller - there are a bun
h of possibilities - for a

start, we only need to worry about the 
ases where the seller is

the high bidder, or the se
ond high bidder. This bid is submitted

at the very beginning before anything is learned about the other

bidders, so being the high bidder involves two 
ases where ea
h of

the other two bidders is the se
ond high bidder.
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• for example, the values of the bidders might be v, v′ and v′′, in

des
ending order. The probability this happens is f (v′) · f (v′) ·
f (v′′) and in this 
ase the payo� of the high bidder is

T1 (v − b (v′)) .

• In order to take the expe
tation a
ross all possibilities, we need to

start with these, so we'll get

∫ v

0

∫ v′

0

T1 (v − b (ṽ)) f (ṽ) dṽf (v′) dv′ =

∫ v

0

T1 (v − b (v′))F (v′) f (v′) dv′

sin
e ea
h of the other bidders 
ould play the role of the se
ond

high bidder, we need to take 2 of these, one for ea
h of the other

bidders.

• then there is the 
ase where our bidder is the se
ond high bidder,

say v′ > v > v′′
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• now, take one of the other two bidders to play the role of v′ and

sum to get

∫ 1

v

T2 (v − b (v′′)) f (v′) dv′f (v′′) dv′′ =

(1− F (v))

∫ v

0

(v − b (v′)) f (v′) dv′.

• Again, there are two di�erent bidders who 
ould play the role of

the high bidder.

• Now we 
an put it together to make the payo� 2 times

∫ v

0

T1 (v − b (v′))F (v′) f (v′) dv′+

(1− F (v))

∫ v

0

T2 (v − b (v′)) f (v′) dv′
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This has to be larger than

∫ ṽ

0

T1 (v − b (v′))F (v′) f (v′) dv′+

(1− F (ṽ))

∫ ṽ

0

T2 (v − b (v′)) f (v′) dv′

for all vand ṽ. The �rst order 
ondition for bidding is

T1 (v − b (v))F (v) f (v) + ((1− F (v))T2 ∗ (v − b (v))) f (v) =

f (v)

∫ v

0

T2 (v − b (v′)) f (v′) dv′

whi
h gives the following result

(v − b (v)) =

∫ v

0
T2 (v − b (v′)) f (v′) dv′

F (v) T1 + (1− F (v))T2
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1.9 Appli
ations outside au
tion theory

• (Klemperer) suppose two parties are involved in a lawsuit. The

party that wins the lawsuit gets utility that is θi higher than it

does when it loses (the payo� to losing is normalized to zero).

These payo�s are private and drawn from a 
ommon monotoni


distribution F

• ea
h party spends bi defending itself and the party that spends the

most wins the lawsuit

• under standard rules (in the US) ea
h party pays its own legal fees,

so the winner gets θi − bi

• 
ould expenditures on legal fees be redu
ed by for
ing the losing

party to pay the winner some fra
tion of the loser's expenses? what

about for
ing the loser to pay some fra
tion of the winner's legal

expenses, should there be a minimum legal expenditure required

to win the 
ase?

• the key insight is that the existing legal system is equivalent from
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a strategi
 viewpoint to an all pay au
tion - the party who spends

(bids) the most wins the 
ase (trades) but all parties pay what they

spent (bid).

• total expe
ted legal expenditures are equivalent to the seller's rev-

enue in the au
tion problem

• the minimum expenditure requirement (for example for
ing lit-

gants to be represented by lawyers) is equivalent to the reserve

pri
e in the au
tion

• suppose �rst that there is an equilibrium in whi
h parties expen-

ditures are in
reasing fun
tions of their gains θ, under the existing

rules a party whose gain is exa
tly equal to the minimum expendi-

ture requirement 
annot gain by litigating, nor 
an they lose sin
e

they re
eive the default payo� 0 by spending nothing, so the rev-

enue equivalen
e theorem implies that expe
ted legal expenditures

are

2

∫ 1

r

F (θ)

[

θ −
1− F (θ)

F ′ (θ)

]

F ′ (θ) dθ (8)
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while parties expe
ted expenditures are equal to the equilibrium

legal expenses

F (θ) θ −

∫ θ

r

F (s) ds

• legal expenditures go to lawyers, so assuming that obje
tive of the

legal system is to maximize lawyer in
ome, the optimal expenditure

requirement is to set r su
h that

r −
1− F (r)

F ′ (r)

as in the optimal selling me
hanism,

• on the other hand, if the obje
tive is to maximize expe
ted gains

to litigation less expe
ted expenditures (and assuming the virtual

valuation is in
reasing), the reserve pri
e 0 satis�es at least the

ne
essary 
ondition for optimization (just 
he
k the derivative of

the payo� evaluated at r = 0.

• what about having the loser pay a portion of his own expenses to

the winner as an additional penalty

0-42



• for simpli
ity assume the loser pays the winner whatever the loser

a
tually spent litigating the 
ase

• assume that the equilibrium bidding strategy is in
reasing, then

the party with the highest valuation will win the 
ase. Let s the

minimum expenditure required to litigate the 
ase. A litigant who

spends exa
tly s will win and get his value θ (without any transfer

from the other player) if the other player de
ides not to 
ontest

• on the other hand, if the other player de
ides to 
ontest, the litigant

who makes the minimum expenditure s will lose for sure and be

for
ed to pay 2s, so the expe
ted payment is

F (r) s+ (1− F (r)) 2s = s+ (1− F (r)) s

whi
h should equal F (r) r in order that the marginal parti
ipant

get exa
tly 0 surplus

• then by the revenue equivalen
e theorem, a legal system with min-

imum expenditure s = F (r)r
2−F (r) in whi
h the loser pays his own ex-

penditure to the winner yields the same expe
ted expenditures as a
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system where ea
h litigant pays his own 
osts and where minimum

expenditures are r

2 Multi-Unit Private Value Au
tions

• maintaining the assumption that ea
h bidder wants only a single

unit and that ea
h bidders' valuation is independently drawn from

the distribution F

• suppose that the seller has n > K > 1 units to o�er for sale.

• analogously to the 
ase with a single unit, there are a number of

di�erent ways that the good 
ould be allo
ated

1. goods 
ould be allo
ated to the K highest bidders at the high-

est reje
ted pri
e

2. again the K highest bidders at the lowest a

epted pri
e

3. K highest bidders are allo
ated, ea
h pays the pri
e that he

or she bids
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4. K obje
ts 
ould be au
tioned one at a time to the K highest

bidders

• Revenue Equivalen
e Theorem for Multiple Units: Suppose that

the au
tion rules and equilibrium are su
h that for every ve
tor

θ ∈ Θn
of valuations, the buyers with the K highest valuations

trade if and only if their valuations are at least r, while buyers

whose valuations are exa
tly equal to r get zero expe
ted payo�.

Then the expe
ted payment by a buyer of type θ is given by

∫ θ

r

s

(

n− 1
K

)

Fn−K−1 (s) (1− F (s))
K−1

f (s) ds (9)

• Proof: By assumption, only the highest K valuation buyers will

trade in equilibrium, so if the Kth

highest valuation among the

other buyers ex
eeds θ the buyer will fail to trade. Conversely,

if this Kth

highest valuation is less than θ, then the buyer will be

one of the winning bidders provided his own valuations ex
eeds the

seller's reserve pri
e r. The density for the Kth

highest valuation
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among the other N-1 bidders is

(

n− 1
K

)

Fn−K−1 (s) (1− F (s))K−1 f (s)
(there is one bidder among the other n − 1 who has valuation

exa
tly equal to s, K − 1 whose valuations ex
eed s, and n − 1 −
(K − 1) − 1 left over whose valuations are lower than s. Then

there are

(

n− 1
K

)

di�erent groups of bidders among the other

n-1 bidders who we 
ould use as high bidders). So the probability

with whi
h the buyer trades is

Q (θ) =

∫ θ

0

(

n− 1
K

)

Fn−K−1 (s) (1− F (s))
K−1

f (s) ds

when the buyers' valuation ex
eeds r and Q (θ) = 0 otherwise.

• in
entive 
ompatibility gives

Pi (θ) =

∫ θ

0

Q (s)′ sds
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as above, so substituting for Q′

gives the result.

2.1 Highest Reje
ted Bid Au
tion (uniform pri
e au
-

tion)

• suppose the K highests bidders trade and pay the pri
e bid by the

K +1 highest bidder (that is the highest bid that fails to win) and

that the seller sets reserve pri
e r.

• then the pri
e paid by a buyer who trades is independent of the

pri
e that he bids, and bidding true valuation is a weakly dominant

strategy, and a Bayesian equilibrium. Sin
e this bidding fun
tion is

monotoni
ally in
reasing, the buyers with the highest n valuations

will trade as required by the revenue equivalen
e theorem

• sin
e a buyer with valuation r will only trade when the Kth

highest

bid among the other buyers is below r a buyer with this valuation

will pay r when he wins and nothing if he doesn't so his expe
ted

payo� is zero as required by the revenue equivalen
e theorem to
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expe
ted payments are given by (9) and seller revenue is just n

times the expe
tation of this payment over θ

2.2 Pay your own bid (Dis
riminatory Pri
e Au
-

tion)

• suppose K highest bidders trade, and ea
h pays his own bid, again

with reserve pri
e r

• assume for the moment that this indire
t me
hanism and the equi-

librium asso
iated with it satisfy the assumptions of the revenue

equivalen
e theorem

• then the expe
ted payment is equal to the bid multiplied by the

probility of winning, or

b (θ)

∫ θ

0

(

n− 1
K

)

Fn−K−1 (s) (1− F (s))K−1 f (s) ds =
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∫ θ

r

s

(

n− 1
K

)

Fn−K−1 (s) (1− F (s))
K−1

f (s) ds
by (9), and this 
an be solved for the equilibrium bidding rule

3 Approximation

• return to a simple �rst pri
e au
tion with asymmetri
 bidders.

Values are again independently distributed on [0, 1], but in this

se
tion they are not identi
ally distributed, so Fi is the probability

distribution for bidder i's value.
• As we have dis
ussed before, equilibrium bidding rules are di�erent

in this 
ase

• example bidder 1 has distribution F1 (x) = x (i.e. U[0, 1]) while

bidder 2 has distribution F2 (x) =
x
2 (i.e, U [0, 2]).
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• verify for yourself that the rules

b1 (θ) =
2

3θ

(

2−
√

4− 3θ2
)

and

b2 =
2

3θ

(

√

4 + 3θ2 − 2
)

are equilibrium bidding rules by verifying that these both solve the

di�erential equations that 
hara
terize the equilibrium.

• Sin
e b1 (θ) ≥ b2 (θ) bidder 2 
an lose the au
tion even though he

has a higher value than bidder 1 - so the au
tion equilibrium is

ine�
ient in the sense that with stri
tly positive probability, the

au
tion will give the good to the wrong person.

• the au
tion is also not revenue maximizing. Player 2 wins the

au
tion when

θ2 >
1

√

1
θ2

1

+ 3
4
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while revenue maximization requires that player 2 be given the

good when θ2 > θ1 +
1
2 (use the virtual valuations).

• so even though the au
tion 
ould be made e�
ient by reverting to

a se
ond pri
e au
tion, this might involve a loss in revenue (I am

not sure, one 
ould probably do the 
al
ulation numeri
ally).

• This leads to an unpleasant situation in whi
h you know that the

au
tion you have designed isn't right, but the only alternatives you


an think of are just di�erent (better in some ways worse in others).

• the 
omputer s
ientists �gured out that you 
ould a
tually quantify

the loss without having to �gure out the optimal me
hanism

• there is a large literature on this (see the arti
le by Jason Hartline

in the readings) - I'll illustrate the methods with surplus and the

�rst pri
e au
tion. Here is the theorem

• Theorem For any n player �rst pri
e au
tion with values inde-

pendently distributed a

ording to the pro�le {F1, . . . , Fn}, the
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expe
ted surplus generated by any Bayesian equilibrium of the au
-

tion is at least

e−1
e as large as the maximal expe
ted surplus.

• for reasons I don't understand, the 
omputer s
ientists like to say

the �rst pri
e au
tion is a

e
e−1 (or a 1.58) approximation of maximal

so
ial surplus.

• To see how they prove this, start with an arbitrary bidder in the

au
tion whose value is θ. From the equilibrium she believes is being

played, she has some belief about the probability distribution of the

highest bid of her opponents. Call this distribution fun
tion Gi -

and noti
e that it is di�erent for every bidder.

• Suppose she bids b in the au
tion. Then the probability distribu-

tion over the bids of the others, along with her own bid determine

her expe
ted payo� as shown in the following diagram:
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G(θ)

θb

Q(b)(θ − b)

• now observe a se
ond fa
t - the expe
ted value of the highest bid
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of the others is

B̂ ≡

∫ 1

0

bdG (b) =

bG (b)|
1
0 −

∫ 1

0

G (b) db =

∫ 1

0

{1−G (b)} db

by the (hopefully) now familiar te
hnique of integration by parts.

• what that means is that the expe
tation of the highest bid of the

others is given by the area above the 
urve G (b) as in the following

�gure
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1

1

G(θ)

θb
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• �nally, the maximum possible surplus that 
ould be earned by a

bidder whose value is θ is given by the area of the following re
t-

angle
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1

1

G(θ)

θb
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• putting this all together gives a �rst bit of approximation
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1

1

G(θ)

θb

Q(b)(θ − b)
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• it kind of looks like the area in blue plus the area in green together

would have almost the same area as the dashed square that rep-

resents the buyer's potential surplus. This hints at the notion of

approximation.

• if you wanted to prove that the blue area and the green area to-

gether were at least half the buyer's surplus, it wouldn't be so hard.

Here is how you would do it

•
Q (b) (θ − b) + B̂ ≥

Q

(

θ

2

)(

θ −
θ

2

)

+ B̂ =

∫ θ
2

0

{(

θ −
θ

2

)

+ b

}

dG (b)+
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∫ 1

θ
2

bdG (b) ≥

∫ θ/2

0

θ

2
dG (b) +

∫ 1

θ/2

θ

2
dG (b) ≥ θ/2

• the �rst inequality follows from the fa
t that the distribution G is

asso
iated with a Bayesian Nash equilibrium. The equality that

leads to the third line follows be
ause it is a �rst pri
e au
tion.

• Noti
e that this inequality doesn't depend on the underlying dis-

tributions of buyers' values, or what Bayesian equilibrium is being

played.

• this is the method of approximation. The only 
ompli
ation is that

the approximation isn't very good. It 
ould obviously be tightened

be
ause the term that appears in the �rst integral is stri
tly larger

than

θ
2 . Sin
e we want to use this in the real approximation we are

looking for we 
an go a step further.
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• Theorem: (Hartline) If a bidder has value θ and bids b as part

of a Bayesian Nash equilibrium, then

˙
Q (b) (θ − b) + B̂ ≥ e−1

e θ

• Proof: The expe
ted payo� to the bidder in a Bayesian equi-

librium is at least as large as her payo� when she uses any other

strategy. Fo
us on the strategy that draws a random out
ome from

the interval

[

0, e−1
e θ

]

using a mixed strategy that uses a distribu-

tion with density

1
θ−b̃

(in other words, the probability with whi
h

the bidder bids something less than or equal to b using this strat-

egy is

∫ b

0
db̃
θ−b̃

. (Verify for yourself that

∫
e−1

e
θ

0
db̃
θ−b̃

= 1 so that this

is a proper density).

Now following the logi
 above

Q (b) (θ − b) + B̂ ≥

∫
e−1

e
θ

0

{

∫ b

0

b
1

θ − b̃
db̃+

∫
e−1

e
θ

b

{(

θ − b̃
)

+ b
} 1

θ − b̃
db̃

}

dG (b)+
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∫ 1

e−1

e
θ

bdG (b) =

∫
e−1

e
θ

0

{

∫
e−1

e
θ

b

1db̃+ b

}

dG (b) +

∫ 1

e−1

e
θ

bdG (b) =

∫
e−1

e
θ

0

{

e− 1

e
θ

}

dG (b) +

∫ 1

e−1

e
θ

bdG (b) ≥

e− 1

e
θ.

• this theorem provides a tool to get the result we are more interested

in.

• Let bi (θ) be an arbitrary bidding rule for bidder i in an au
tion

where values are independently distributed a

ording to the distri-

bution fun
tions {F1, . . . , Fn}. Suppose the Fi are all 
ontinuously

0-63



di�erentiable, in parti
ular so that no two θi 
an be the same with

positive probability. Suppose the seller in a �rst pri
e au
tion has

zero 
ost. Suppose {qi}i=1,...,n is the allo
ation rule supported

by awarding the good to the person who submits the highest bid.

Then the expe
ted surplus generated by the au
tion is

∫

· · ·

∫

V (θ) dF1 . . . dFn =

∫

· · ·

∫ n
∑

i=1

qi (θ) θidF1 . . . dFn

≡

∫

· · ·

∫ n
∑

i=1

qi (θ) (bi (θi) + (θi − bi (θi))) dF1 . . . dFn

=

∫

· · ·

∫ n
∑

i=1

qi (θ) bi (θi) dF1 . . . dFn+

∫

· · ·

∫ n
∑

i=1

Qi (θi) (θi − bi (θi)) dF1 . . . dFn
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• In words, the expe
ted surplus in an au
tion is always equal to

expe
ted revenues of the seller plus the sum of the expe
ted payo�s

of the buyers.

• Maximal expe
ted surplus is

max
{qi}i=1,n

∫

· · ·

∫ n
∑

i=1

qi (θ) θidF1 . . . dFn

subje
t to the 
onstraint that qi (θi) ∈ R
+;

∑n
i=1 qi (θi) ≤ 1 and

qi (θ) = 1 if bi (θi) > bj (θj)∀j 6= i.

• Now we get the main approximation theorem.

• Theorem (Hartline) The expe
ted surplus generated by the au
-

tion must be at least

e−1
e times the maximal expe
ted surplus.

• Proof: We start with the result of the value approximation theo-

rem given above

Q (bi (θ)) (θi − bi (θ)) + B̂i ≥
e− 1

e
θi
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Suppose that q∗i (θ) is the out
ome fun
tion that maximizes ex-

pe
ted surplus (obviously this out
ome fun
tion is the one that

gives the good to the buyer with the highest value - as you re
all

this isn't what the au
tion does).

• Trivially sin
e q∗i (θ)is always less than or equal to 1, we must then

also have (nothing deep, we are just shrinking one term on the left,

but the whole thing on the right)

Q (bi (θ)) (θi − bi (θ)) + B̂iq
∗
i (θ) ≥

e− 1

e
θiq

∗
i (θ) .

Now sum these terms over i and take expe
tations with respe
t to

the θi.
n
∑

i=1

∫ 1

0

Q (bi (θi)) (θi − b) dFi (θi)+

∫

· · ·

∫ n
∑

i=1

B̂iq
∗
i (θ) dF1 . . . dFn ≥
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e− 1

e

∫

· · ·

∫ n
∑

i=1

θiq
∗
i (θ) dF1 . . . dFn.

Noti
e that the �rst term on the left is the sum of the expe
ted

payo�s of the buyers, while the term on the right is the maximal

expe
ted surplus.

The last step 
omes from the following simple logi


∫

· · ·

∫ n
∑

i=1

B̂iq
∗
i (θ) dF1 . . . dFn =

∫

· · ·

∫ n
∑

i=1

max
θj 6=θi

bj (θj) q
∗
i (θi) dF1 · · · dFn ≤

∫

· · ·

∫ n
∑

i=1

max
θi

bi (θi) q
∗
i (θi) dF1 · · · dFn

0-67



where the last term is the expe
ted revenue in the au
tion. The

bottom line is that the sum of the expe
ted payo�s to buyers plus

the expe
ted revenue to the seller is always at least

e−1
e of the

maximal expe
ted surplus.

4 Interdependen
e

• players types Θi aren't their values, they are just signals that pro-

vide information about value - assume types for ea
h player are

drawn from 
losed intervals.

• player i′s value for the obje
t being sold in the au
tion is

vi (θ1, . . . , θn)

• in 
ase the buyer's value also depends on information possessed by

the seller, let θ0 be the seller's type, so that

vi (θ0, . . . , θn)
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• In either 
ase, vi is assumed to be non-de
reasing in ea
h of its

arguments, and stri
tly in
reasing in θi

• the distribution of values is given by F (θ1, . . . , θn) with 
ontinuous

and di�erentiable density f (θ1, . . . , θn)

• an environment is symmetri
 if vi = vj = u for all i and j and if

the density is symmetri
 in the sense that if the ve
tors θ and θ′

are permutations of one another, then f (θ) = f (θ′)

• de�ne

v (θi, y) = E

{

u (θi, θ−i) |θi; max
j 6=i

θj = y

}

• Theorem: In a se
ond pri
e sealed bid au
tion in a symmetri


environment, there is a Bayesian Nash equilibrium in whi
h all

bidders use the the bidding rule b (θi) = v (θi, θi).

• Proof: The payo� a buyer gets when his type is θ and his bid is

b′ and all other bidders are using the rule b (θi) = v (θi, θi) is given
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by

∫ b−1(b′)

0

(v (θi, y)− b (y)) g (y|θi) dy
where g (y|θi) is the density of the maximum value of the θ−i. Then

by substitution, this is

∫ b−1(b′)

0

(v (θi, y)− v (y, y)) g (y|θi) dy.

• Sin
e b is monotoni
ally in
reasing in a symmetri
 environment,

b−1

is monotoni
ally in
reasing, so raising the bid results in the

integral being taken over larger values of y. Again, using mono-

toni
ity, y > θi if and only if v (y, y) > v (θi, y), so, for example,

if b′ > v (θi, θi) the intergral will in
lude an interval along whi
h

v (θi, y)− v (y, y) is negative, and this interval 
ould be eliminated

by redu
ing the bid. Exa
tly the same argument shows that bids

below are dominated.

• In a button au
tion (often referred to as an English au
tion) pri
e

starts at 0 and rises 
ontinuously.
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• Ea
h bidder begins the au
tion with his/her �nger pressing down

on a button. A bidder who takes their �nger o� the button is


onsidered to be out of the au
tion and 
an no longer parti
ipate.

Everyone observes when someone else takes their �nger o� the but-

ton and the pri
e that prevailed when this event o

urs.

• The au
tion ends when the se
ond last bidder takes their �nger

o� the button, at whi
h point the pri
e stops rising. The winning

bidder is the remaining bidder who pays whatever the pri
e was

when it stopped going up.

• This is a dynami
 game in whi
h at every instant, a bidder who

hasn't yet taken their �nger o� the button sees a sequen
e of pri
es

p̂k, p̂k−1, . . . , p̂1 at whi
h the previous bidders dropped out of the

au
tion. These are ordered so that p̂k ≥ p̂k−1 ≥ . . . and so on. So

the kth bidder who dropped out of the au
tion did so at pri
e p̂k.

• A strategy for a bidder is a plan about when to take their �nger

o� the button. Think of the bid b as the pri
e at whi
h the bidder

plans to take her �nger o� the button.
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• De�ne the following bidding rules

b0 (θi) = v (θi, θi, . . . , θi) .

• what that means is that the bidder plans to keep her �nger on the

button as long as the pri
e is less than b0 (θi) if no one drops out

in the interim.

• sin
e v (θi, θi . . . , θi) is stri
tly in
reasing by assumption, b0 (θi) is

stri
tly in
reasing, so it has an inverse b−1
0 .

• then, if the �rst bidder to drop out drops out at pri
e p̂1, de�ne

b1 (θi, {p̂1}) = v
(

θi, θi, . . . , b
−1
0 (p̂1)

)

Here v
(

θi, . . . , b
−1
0 (p̂1)

)

means that the last of the n arguments in

v (θi, . . . , θi) is repla
ed with b−1
0 (p̂1).

• now using these two bidding rules, we 
an de�ne the other bidding

rules indu
tively.
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• suppose that k bidders have dropped out at pri
es p̂1 ≤ p̂2 ≤ . . . ≤
p̂k, that we have de�ned the monotoni
ally in
reasing bidding rule

bk (θi, p̂1, . . . , p̂k), and that another bidder drops out at pri
e p̂k+1.

Then de�ne

bk+1 (θi, p̂1, . . . p̂k+1) = v
(

θi, . . . , θi, b
−1
0 (p̂1) , . . . , b

−1
k−1 (p̂k) , b

−1
k (p̂k+1)

)

.

• Theorem: The bidding rules bk de�ned above 
onstitute a (sym-

metri
) perfe
t Bayesian equilibrium for the english au
tion.

• Proof: Consider any history (p̂1, . . . , p̂k) in whi
h bidder i still has

her �nger on the button, and suppose that all the other bidders

are using the strategy {bk} as des
ribed above. Let yk be the kth

lowest type among the types of the other players. Suppose the


urrent pri
e is p. Then the value of the good to the bidder with

value θi is

E

{

v (θi, θ−i) |y1 = b−1

0
(p̂1) , . . . , yk = b−1

k
(p̂k) , yk+1 ≥ b−1

k
(p) , . . . , yn−1 ≥ b−1

k
(p)

}

≥

v
(

θi, b
−1

k
(p) , . . . , b−1

k
(p) , b−1

0
(p̂1) , . . . , b

−1

k
(p̂k)

)

where in this expression the term b−1
k (p) appears n− k − 1 times.
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• if θi > b−1
k (p), then the previous expression is larger than

v
(

b−1
k (p) , b−1

k (p) , . . . , b−1
k (p) , b−1

0 (p̂1) , . . . , b
−1
k (p̂k)

)

= p
so the payo� to keeping her �nger on the button is larger than

dropping out and getting zero. Conversely, if θi < b−1
k (p) then the

expe
ted value is less than the 
urrent pri
e, and dropping out is

a best reply.

4.1 A�liation

• When the joint distribution of types has a density f , a spe
ial 
lass

of distributions 
an be des
ribed

• De�nition: Variables (θ1, . . . , θn) are said to be a�liated if for

any pair of ve
tors θ and θ′

f (θ ∨ θ′) f (θ ∧ θ′) ≥ f (θ) f (θ′)

where θ∨θ′ ≡ {max [θ1, θ
′
1] , . . . ,max [θn, θ

′
n]} and θ∧θ′ = {min [θ1, θ

′
1] , . . . ,min .
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