
1 Theory of Autions

1.1 Independent Private Value Autions

• for the moment onsider an environment in whih there is a single

seller who wants to sell one indivisible unit of output to one of n

buyers whose valuations are private, a buyer whose valuation is θ

who trades at prie p gets surplus θ− p the seller gets surplus p in

this ase. Eah buyer's valuation is independently drawn from a

distribution F on [0, 1]. F is ontinously di�erentiable and stritly

inreasing.

• autions are implemented using a variety of indiret mehanisms

1. in a �rst prie aution eah buyer submits a bid and the high

bidder pays his bid, seurites autions, treasury bills, proure-

ment, timber autions

2. in a seond prie aution eah buyer submits a bid, the high

bidder wins and pays the bid of the seond high bidder, ebay,

learing house
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3. english aution - the autioneer asks for a starting bid, then

asks for a volunteer to raise the bid, he ontinues to do this

until no one o�ers to raise the bid, the last bidder o�ered to

raise the bid wins and pays that bid

4. english button aution - eah bidder who wants to bid begins

by pressing and holding down a button. The prie is then

raised ontinuously and eah bidder releases the button when

the prie gets too high. When there is only one bidder left

holding down a button, that bidder wins and pays the prie

where the last bidder dropped out

5. duth aution - the prie falls ontinuously until some bidder

yells stop. The yelling bidder wins and pays the prie at whih

the prie stopped. Duth �ower autions

6. all pay aution - all bidders submit bids, the high bidder wins

but all bidders pay what they bid.

7. Cremer MLean aution - a seond prie aution in whih all

bidders who want to partiipate have to agree ex ante to pay

a fee (that might depend on the bids of the other bidders)
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• Sometimes (inreasing virtual valuations, iid valuations) the seond

prie aution will be optimal.

• Even when autions aren't optimal for the seller, many of them are

omparable in terms of revenue.

• The following theorem allows you to ompare all of these autions

but the last one when valuations are iid.

1.2 The optimal selling mehanism

An outome funtion for the seller is a spei�ation of what the seller

wants to happen for eah pro�le of valuations θ = {θ1, . . . , θn} . An

outome onsists of three things, a prie that eah buyer pays if he gets

the objet for sale, a prie he pays if he doesn't get it, and the probability

with whih he gets the objet. These depend on the pro�les of valuations,

so lets write them as qi (θ) , pi (θ) and p′i (θ), where pi (θ) is the prie that

buyer i pays when he gets the good, and p′i (θ) is the prie he pays if

he doesn't get the good, while qi (θ) is the probability that i is atually

given the good.
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For example, suppose the seller wants to run the following mehanism

- eah buyer pays a fee κ to partiipate in the mehanism, then one of

the buyers is hosen at random and given the good in exhange for a

�xed fee p. Then the seller would like to hoose the funtions that are

independent of θ as follows:

qi (θ) =
1

n

pi (θ) = p

and

p′ (θ) = κ.

Hopefully you an see that though this represents an outome funtion,

the seller an't really expet it to happen. First of all, no buyer whose

value is below p will partiipate. Even if their values are above p they

will only partiipate if

(θ − p)
1

n
≥ κ.
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The seller an do anything she likes at this point as long as

∑

i

qi (θ) ≤ 1.

She an assign any pro�le of payments she likes, inluding negative pay-

ments in p (θ) and p′ (θ).

The payo� to buyer i from any outome θ is then (θi − pi (θ)) qi (θ)−
(1− qi (θ)) p

′
i (θ) whih allows us to ompute the expeted payo� assoi-

ated with the mehanism for eah of the buyers

E {(θi − pi (θ)) qi (θ)− (1− qi (θ)) p
′
i (θ)}

∫

· · ·

∫

(θi − pi (θi, θ−i)) qi (θi, θ−i)−(1− qi (θi, θ−i)) p
′
i (θi, θ−i)

∏

i′ 6=i

dF (θi′) .

(1)

One the seller has de�ned the three funtions, she an use this payo�

funtion to determine whether or not the aution is worth partiipating

in, and whether it is inentive ompatible.

As for the outside option, we don't have to ompute any ompliated

arg max in the aution, we an just use the fat that a seller who doesn't
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like the bids that some buyer submits an just refuse to trade with the

buyer. So the outside option value for eah buyer an be set to 0 for every

buyer independent of type. Individual rationality simply means that (1)

is non-negative for eah buyer, and for eah of the buyer's types.

Eah mehanism like this has a orresponding redue form represen-

tation as follows:

P (θi) = E

{

n
∑

i=1

pi (θ) qi (θ) + (1− qi (θ)) p
′
i (θ)

}

. (2)

So all we need to do to �nd the best way to sell is to maximize the

expetation of (2) subjet to the inentive ompatibility and individual

rationality onstraints de�ned by (1).

Correspondingly, we an write

Qi (θi) = Eqi (θi, θ−i) .

The olletion {Pi (θi)Qi (θi)}i=1,n is sometimes alled the redued form

mehanism.
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Buyer i's expeted payo� from partiipating in the mehanism is

Qi (θi) θi − Pi (θi) .

If the aution mehanism is inentive ompatible, then

Qi (θi) θi − Pi (θi) ≥ Qi (θ
′
i) θi − Pi (θ

′
i) .

Lets assume that Qi and Pi are di�erentiable. Then this requires

Q′
i (θi) θi = P ′

i (θi) . (3)

This expression is an identity (i.e., it is true for all values of θi, so from

basi alulus

Pi (θi) =

∫ θi

0

P ′
i (t) dt =

∫ θi

0

Q′
i (t) tdt =

Qi (θi) θi −

∫ θi

0

Qi (t) dt
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(whih is just integration by parts). There is no onstant term at the be-

ginning of this expression beause Pi (0) > 0 would mean the mehanism

did not satisfy individual rationality for a buyer of type 0.

If two funtions are identially equal, so are their derivatives, so

P ′′ (θi) = Q′′ (θi) θi +Q′ (θi) .

What is important about this is the seond order neessary ondition

Q′′ (θi) θi − P ′′ (θi) = −Q′ (θi)

will be satis�ed if the mehanism {pi (θ) , qi (θ)}i=1.n satis�es Q′ (θ) > 0

(that is, higher types trade with higher probability).

Assuming (just to make life simple) we treat all the buyers the same

way so that the funtions Pi and Qi are all the same, we an rewrite the

seller's revenue (2) as

n

∫ 1

0

P (θi) f (θi) dθi =

n

∫ 1

0

{

Q (θi) θi −

∫ θi

0

Q (t) dt

}

f (θi) dθi =
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n

∫ 1

0

Q (θi) θidF (θi)− n

∫ 1

0

∫ θi

0

Q (t) dtf (θi) dθi =

n

∫ 1

0

Q (θi)

(

θi −
1− F (θi)

f (θi)

)

f (θi) dθi =

∫ 1

0

· · ·

∫ 1

0

n
∑

i=1

{

qi (θi, . . . , θn)

(

θi −
1− F (θi)

f (θi)

)}

f (θ1) . . . f (θn) dθ1 . . . dθn.

(4)

In this series of inequalities, the fourth one follows by integrating the

previous expression by parts.

Now the onstraint on qi is that for every pro�le of types θ1 . . . , θn,

the sum

∑n
i=1 qi (θi) should be less than or equal to one. This means that

for every pro�le of types, the sum is a weighted average of the virtual

valuations of eah type. If for some pro�le of types, none of these virtual

valuations are positive, then this expression suggests that setting all the

qi to zero is the best thing to do. While if one of more of the virtual

valuations is positive, then the best thing to do is to set qi = 1 for the

largest suh virtual valuation.
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This tells us exatly how to maximize revenue. Choose and r suh

that r = 1−F (r)
f(r) so that the virtual valuation is exatly equal to 0 when

it is evaluated at r. For eah pro�le of values (θ1, . . . , θn), if the highest

value for θi is less than or equal to r, don't sell to anyone, otherwise

sell for sure to the highest bidder. (these assertions follow from the

monotoniity of the virtual valuation funtion). As we will show in the

next setion, this is exatly what happens when you run an aution with

reserve prie r. Any priing rule you use to resolve the aution will work

provided it gives

P (θi) = Q (θi) θi −

∫ θi

0

Q (t) dt

for eah θi.

1.3 Revenue Equivalene Theorem

• Revenue Equivalene Theorem: Suppose that buyer valuations are

identially and independently distributed aording to some known

distribution F whose support is an interval in R and for whih θ−
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1−F (θ)
f(θ) is an inreasing funtion. Suppose further that the indiret

mehanism that guides trade has an equilibrium in whih the buyer

with the highest valuation trades if and only if his valuation is at

least r, and that a buyer with valuation r gets an expeted payo�

equal to zero. Then the seller's expeted revenue from this indiret

mehanism is

n

∫ 1

r

Fn−1 (θ)

[

θ −
1− F (θ)

F ′ (θ)

]

F ′ (θ) dθ

Furthermore, eah buyer's expeted payment is given by

P (θ) = Fn−1 (θ) θ −

∫ θ

r

Fn−1 (x) dx

• Proof: This follows the mehanism design argument in the previous

leture, but I give it here for ompleteness

• eah buyers' expeted payo� is given by

Qi (θ) θ − Pi (θ)
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where Qi is the probability with whih the buyer trades and Pi is

the expeted payment the buyer makes to the seller.

• by assumption the indiret mehanism has an equilibrium in whih

the buyer with the highest valuation trades, so this trading prob-

ability is the same for every one and equal to Fn−1 (θ) for buyers

whose valuations at at least r, and it is equal to zero otherwise

• sine it annot pay for a buyer to behave as if his type were di�erent

from his true type in any equilibrium, it must be that

Fn−1 (θ)
′
θ = P ′

i (θ)

for every buyer whose valuation is at least r

• Integrating by parts gives

Pi (θ) =

∫ θ

0

Fn−1 (s)
′
sds = Fn−1 (θ) θ −

∫ θ

r

Fn−1 (s) ds (5)

• this gives the result for buyers' expeted payo�. The seller's ex-

peted revenue is the sum of the expeted revenue for eah buyer,
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or

n

∫ 1

0

Pi (θ) dF (θ) = n

∫ 1

r

{

Fn−1 (θ) θ −

∫ θ

r

Fn−1 (s) ds

}

dF (θ)

• beause Pi (t) = 0 if t < r.

• to integrate this by parts write it �rst as

n

{

∫ 1

r

{

Fn−1 (θ) θ
}

dF (θ)−

∫ 1

r

∫ θ

r

Fn−1 (s) dsdF (θ)

}

.

In the seond term in the brakets, think of

u (θ) =

∫ θ

r

Fn−1 (s) ds

and

dv (θ) = dF (θ)
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so that the seond double integral an be written as

F (θ)

∫ θ

r

Fn−1 (s) ds

∣

∣

∣

∣

∣

1

r

−

∫ 1

r

Fn (θ) dθ =

∫ 1

r

Fn−1 (θ) dθ −

∫ 1

r

Fn (θ) dθ.

Reombine this with the �rst integral to get

n

{
∫ 1

r

{

Fn−1 (θ) θ
}

dF (θ)−

∫ 1

r

Fn−1 (θ) dθ +

∫ 1

r

Fn (θ) dθ

}

=

n

∫ 1

r

Fn−1 (θ)

[

θ −
1− F (θ)

F ′ (θ)

]

F ′ (θ) dθ.

1.4 Using Revenue Equivalene - First Prie Aution

• in the �rst leture, we showed an example of a �rst prie aution

that possessed an equilibrium in inreasing bidding rules. Now
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let us just suppose that suh an equilibrium exists more generally.

Then the expeted payment is equal to the bid multiplied by the

probability of winning, i.e.,

Pi (θ) = Qi (θ) bi (θ) = Fn−1 (θ) bi (θ)

so

bi (θ) = θ −

∫ θ

r
Fn−1 (s) ds

Fn−1 (θ)

(6)

for eah θ ≥ r

• if all bidders use this bid funtion, the bidder with the high valua-

tion will win beause this funtion is inreasing, it satis�es inentive

ompatiblity, so no bidder using it would prefer to at like a bidder

with another valuation. Chek for yourself that is doesn't pay to

bid pries that no other bidder would ever bid and that a buyer of

valuation r gets zero expeted payo�

• in other words, the revenue equivalene theorem an be used to

alulate the equilibrium bidding strategy in a �rst prie aution.
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1.5 Seond Prie Aution

• in a seond prie aution, there is an equilibrium in whih eah

buyer bids his true valuation. This bidding strategy is inreasing,

so the buyer with the highest valuation will trade in a seond prie

aution - a buyer who bids the reserve prie will only win if no

other buyers bid, but then he gets zero surplus

• thus from the revenue equivalene theorem a �rst and seond prie

aution in whih the reserve prie is the same give the seller the

same expeted revenue.

• furthermore, the expeted payment made by a bidder of type θ

in the seond prie aution is equal to the probability of winning

multiplied by the expetation of the seond highest valuation on-

ditional on θ being the highest valuation.

• the from (5), it follows that the equilibrium bid in the �rst prie

aution for a bidder of type θ is equal to the expeted value of the

seond highest valuation or r whihever is higher, onditional on θ
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being the highest valuation (just integrate by parts)

∫ r

0
(n− 1)F (s)n−2 f (s) rds

Fn−1 (θ)
+

∫ θ

r
(n− 1)F (s)n−2 f (s) sds

Fn−1 (θ)
=

∫ r

0
(n− 1)F (s)n−2 f (s) rds

Fn−1 (θ)
+

∫ θ

r
(n− 1)F (s)n−2 f (s) sds

Fn−1 (θ)
=

rF (r)n−1

Fn−1 (θ)
+

F (s)
n−1

s
∣

∣

∣

θ

r
−
∫ θ

r
F (s)

n−1
ds

Fn−1 (θ)

= θ −

∫ θ

r
Fn−1 (s) ds

Fn−1 (θ)
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1.6 All-Pay Aution

• let us use the tehnique we employed for �rst prie autions to

ompute the equilibrium in the all pay aution, suppose there is an

equilibrium in inreasing bidding strategies so that the equilibrium

outome is always that the buyer with the high valuation ends up

trading.

• sine everyone pays whether or not they win the objet, the ex-

peted payment is equal to the bid, i.e.,

b (θ) = Fn−1 (θ) θ −

∫ θ

r

Fn−1 (s) ds

• Notie that in eah of these appliations, we know the alloation

rule qi but we don't know the rules pi or p
′
i beause they have to

be derived from equilibrium play whih di�ers in eah of the three

autions. The theorem says that this equilibrium play, whatever it
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is, must support an expeted prie P that satis�es

P (θ) = Fn−1 (θ) θ −

∫ θ

r

Fn−1 (x) dx.

• thats why we were able to derive the equilibrium bidding funtions

from eah of the last equation. One we have those funtions, we

an dedue the outome funtions assoiated with eah.

• For eah of the three autions we have

qi (θi, θ−i) =

{

1 θi > θj∀j 6=i

0 otherwise.

• or if you think that F has atoms, q (θi) =
1

#{j:j≥j′∀j′ 6=j} .

• In the seond prie aution, we have p′i (θi, θ−i) ≡ 0 while

pi (θi,θ−i) = max
j 6=i

{θj}
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• In the �rst prie aution p′i is always 0 while,

pi (θi, θ−i) = θi −

∫ θ

r
Fn−1 (s) ds

Fn−1 (θ)
.

• Finally for the all pay aution

p (θi, θ−i) = p′ (θi, θ−i) = Fn−1 (θ) θ −

∫ θ

r

Fn−1 (s) ds.

1.7 Identi�ation

• bidder types are unknowns from the perspetive of an outside ob-

server, however they are assoiated with whatever the outside ob-

server an see

• the theory starts with two piees of information, and aution for-

mat, all it A and a family F of type distributions that the modeler

believes are possible. In this leture and seond prie aution is an

aution format, while we believe that types are i.i.d and with eah
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individual bidders type desribed by some distribution funtion F

on [0, 1] for whih F has a stritly positive density at eah point in

[0, 1]

• an outside observer might have historial data on winning bids in

a �rst prie aution, or maybe the observer an reord all the bids

in an aution. This historial data involves some distribution G of

observable information.

• Bayesian equilibrium play in the aution A indues some distribu-

tion on the observables denoted by ΨA : F → G where G is the

image of F indued by the transformation ΨA - in words, G is all

the distributions of observables that you ould possibly get through

equilibrium play for some distribution F ∈ F .

• Identi�ation is the problem of working bakwards from G to F .

• Formally, the type distribution assoiated with some aution A

is said to indenti�able if for every G ∈ G there is a unique type

distribution F suh that G = ΨA (F ) .
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• in this setion we onsider two questions - are type distributions

identi�able in the seond prie aution if you have observed a his-

torial series of transations pries, and, are type distributions

identi�able in the �rst prie aution if you have observed all the

bids.

• to start, suppose you have observed a sequene of autions and

reorded the bids that were made by di�erent bidders, i.e., if you

have held T autions, eah of whih had n bidders, then you have

observations on nT di�erent bids. You believe the values behind

these bids are independently drawn from some unknown distribu-

tion F .

• an eonometriian has estimated that the observed distribution of

bids is given by G, a umulative distribution funtion that we'll

assume has a density. The problem is to tell him/her what the

unknown distribution of values is assuming that the bidders are all

playing equilibrium strategies.

• As you now know, the equilibrium strategies depend on the type
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of aution the data omes from

• for a seond prie aution this is easy if G (b) is the proportion of

all bids that were less than or equal to b then that is also the pro-

portion of values that are less than or equal to b - the distribution

of bids is the distribution of values

• next time the eonometriian arrives you learn they misinterpreted

the data. The nT observations that were used to estimate G

weren't all the bids, they were just nT observations on the pries

that people paid after winning the aution - they are pries from

a seond prie aution not the bids. Can you still identify the

distribution of values?

• The result is as follows, if G (p) is the distribution of trading pries

in the seond prie aution (the proportion of autions for whih

the winning bidder paid something less than or equal to p, then,

the proportion of bidders in the autions whose values are less than

0-22



of equal to p is given by solving the following equation for F̃

G (p) = n (n− 1)

∫ F̃

0

tn−2 (1− t) dt.

Notie that sine the right hand side is stritly inreasing in F̃ , it

has a unique solution for every p.

• to see this, start with the observation that in any partiuar seond

prie aution, the trading prie is the seond highest value among

all the bidders who were there. If the distribution of values were

equal to F , then the probability that the seond highest value is

equal to some winning prie b is
n (n− 1)F (b)

n−2
(1− F (b)) f (b)

So the distribution F supports a umulative distribution

G (b) = n (n− 1)

∫ b

0

F
(

b̃
)n−2 (

1− F
(

b̃
))

f
(

b̃
)

db̃
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• G (b) is given by the data we have, so we have to try to �nd an F

that will support this relationship.

• now do the integration on the right hand side by a hange of vari-

able in whih t = F
(

b̃
)

and dt = f
(

b̃
)

db̃ so it equals

n (n− 1)

∫ F (b)

0

tn−2 (1− t) dt

• This gives the property that F has to satisfy so that it would

support the observed distribution of bids - whih is the result we

want.

• Case 2: G is the distribution of bids in a �rst prie aution.

• In this ase the result is that if the proportion of bids that is less

than or equal to p in a series of idential �rst prie autions with

N bidders then, F must satisfy

G (p) = F

(

p+
G (p)

g (p) (n− 1)

)

.
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• what this says is that you �nd F (x) by �nding px suh that

x = px +
G (px)

g (px) (n− 1)

then taking F (x) as G (px). Notie that the funtion p+ G(p)
g(p)(n−1)

is ompletely determined by the data you have.

• Here is the argument: the expeted payo� to a bidder in a �rst

prie aution is

(θ − b (θ′))Fn−1 (θ′)

where θ′ is the value that the bidder pretends to be.

• if b is an equilibrium bidding strategy, then this expeted payo�

will be maximized at v′ = v, whih gives the �rst order ondition

b′ (θ)Fn−1 (θ) = (n− 1) (θ − b (θ))Fn−2 (θ) f (θ)

whih you ould write as

1 =
(θ − b (θ)) f (θ)

F (θ) b′ (θ)
(n− 1) (7)
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• now for any bid b the data says that the probability that any bidder

will bid something less than or equal to b̃ is

G
(

b
(

θ̃
))

= F
(

b−1
(

b
(

θ̃
)))

= F
(

θ̃
)

where θ̃ is the type of bidder who bids b̃ so that g
(

b
(

θ̃
))

b′
(

θ̃
)

=

f
(

θ̃
)

or

g
(

b̃
)

=
f
(

θ̃
)

b′
(

θ̃
)

evaluated at θ̃ = b−1
(

b̃
)

.

• Now we an substitute these last two observations into (7) and

evaluate them at θ̃ to get

1 =
(

θ̃ − b̃
) g

(

b̃
)

G
(

b̃
) (n− 1)
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whih means that

θ̃ = b̃+
G
(

b̃
)

g
(

b̃
)

(n− 1)
,

This expression just says that if we observe a bid b̃, then the type

of the player who submitted it must be b̃ +
G(b̃)

g(b̃)(n−1)

. This is

the inverse funtion for the bidding rule expressed in terms of the

observables G rather than the unobservables.

• the impliation of this is that the proportion of bids that are less

than or equal to b̃, G
(

b̃
)

is the same as the measure F

(

b̃+
G(b̃)

g(b̃)(n−1)

)

.

1.8 Position Autions

• An searh site has a webpage with a lot of tra� (like google).

This webpage has two 'slots' at the top for ads. There are three
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�rms who have their own websites with ads on them. Consumers

lik through the ad slots on the searh ompany's web to look at

these �rms' ads. Any onsumer who visits a �rm web page will

either deide to buy the �rm's good, in whih ase the payo� to

both the onsumer and the �rm is 1 (prie plays no role here). If

the onsumer doesn't buy, the payo� to both the onsumer and

�rm is 0.

• eah �rm has a quality v whih measures the probability that a on-

sumer will hoose to buy the produt after seeing the web page.

Eah �rm knows its own quality, otherwise information is inom-

plete. Ex ante eah onsumer believes that eah �rm's quality is

independently drawn from some distribution F with support [0, 1].

• The searh site holds an aution in whih eah of the three �rms

bids the amount they are willing to pay per 'lik'. A lik ours

when a onsumer liks through the link in the searh sites slot

and looks at an individual �rm's webpage.

• the highest bidder's link is plaed in the top slot - the high bidder
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pays the seond highest bid for eah lik on its ad. The seond

highest bidder's ad is plaed in the lower slot, the seond high

bidder pays whatever the third highest bidder bid.

• Cliking on an ad is assumed to be ostly - the searh ost for

onsumer i is si drawn using a distribution G with support on

[0, 1].

• the proess then goes like this - eah of the three �rms submits a

bid, say bi. Suppose b1 > b2 > b3. Firm 1 (who bids b1) has their

link plaed in the top slot, �rm 2 has their link plaed in the lower

slot.

• eah onsumer deides whether or not to lik on one of the links

on the searh site's web page.

• when a onsumer liks through the link to �rm i and views �rm

i′s webpage, �rm i makes a payment to the searh �rm equal to

whatever prie it won in the aution, eah onsumer buys from the

�rm with probability vi.
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• a onsumer who liks through a link and fails to buy an try again

at the seond slot

• let T1 and T2 be the proportion of onsumers who lik on the top

slot. Then the pro�t of �rm 1 is

T1 (v1 − b2)

• the pro�t of �rm 2 is

T2 (v2 − b3)

• �rm 3 earns 0

• The payo� to a onsumer with searh ost s who liks through

slot i is

vi − s

while the payo� to a onsumer who liks through both slots is

v1 − s+ (1− v1) (v2 − s)
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• Result: There is an equilibrium in whih eah of the three �rms

bids less than their value in the aution, both T1 and T2 are positive

with T1 > T2.

• Lets assume, as we did with standard autions, that the bidding

rule that �rms use is a stritly inreasing funtion b (v) (whose

range is ontained in [0, 1]). If so, the probability that a �rm with

value v wins the top slot is

F 2 (v)

whih is exatly the same as in the �rst and seond prie autions

we looked at previously. The probability the �rm wins the seond

slot is

2F (v) (1− F (v))

• Without knowing what the equiilbrium bidding funtion is, we an

still address an interesting question. As we look at the page with

two ads displayed, what should we expet the quality of the link

in the �rst ad to be?
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• We have to begin with the fat that when the �rm starts her searh

she already has a bunh of information, in partiular, she an see

the names of the �rms in eah of the slots, and presumably knows

the identify of the �rm that didn't win a spot. Call the �rms A B

and C. The probability that things work out this way is

∫ 1

0

∫ v

0

∫ v′

0

f (v) f (v′) f (ṽ) dṽdv′dv =

∫ 1

0

∫ v

0

f (v′)F (v′) dv′f (v) dv =

∫ 1

0

1

2

∫ v

0

dF 2 (v′) =
1

2

∫ 1

0

F 2 (v) f (v) dv =

1

6

∫ 1

0

dF 3 (v) =
1

6
.

So all the probability alulations that follow should be onditional

on that. This ondition will anel out when we do onditional

probability alulations.
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• The expeted quality of �rm A is then

V1 ≡
1
2

∫ 1

0
ṽF 2 (ṽ) f (ṽ) dṽ

1
6

.

• the reason this is interesting is that onsumers will only lik on a

slot if the expeted payo� exeeds their searh ost. V1 represents

the expeted payo� to searhing the top slot. This determines the

lik through rate - T1 = G (V1) - this is the measure or proportion

of onsumers whose searh osts are low enough that they will be

willing to lik through the link in the top slot.

• the lik through rate on the lower slot is more ompliated. Only

onsumers whose searh ost is below V1 will ever lik on the

seond slot - and only if they fail to trade with �rm A. Even then,

they won't know the quality of �rm A but will beome pessimisti

beause the know that it is the best of the two �rms.

• this requires �guring out the expeted quality of �rm B onditional

on having failed to �nd a trade in the upper slot.
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• we'll do this by alulating the onditional density for eah value

v of �rm B - reall from the rule for onditional probability

Pr (v|failed to trade with A) =
Pr(v ∩ failed to trade with A)

Pr (failed to trade with A)

• both probabilities should be onditional on the outome with A in

the top slot, but the ondition

1
6 will be in both the numerator

and denominator, so we'll leave it out. The probability in the

numerator is

∫ 1

v

(1− ṽ) f (ṽ) dṽf (v)F (v)

• The event the onsumer didn't trade with A has probability

1

2

(
∫ 1

0

(1− ṽ)F 2 (ṽ) f (ṽ) dṽ

)

whih by the rule for onditional probability gives

Pr (v|failed to trade with A) =

∫ 1

v
(1− ṽ) f (ṽ) dṽf (v)F (v)

1
2

∫ 1

0
(1− ṽ)F 2 (ṽ) f (ṽ) dṽ

.
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• Notie that if we integrate aross all possible values v for �rm B

we get

∫ 1

0

∫ 1

v

(1− ṽ) f (ṽ) dṽf (v)F (v) dv =

1

2

∫ 1

0

{
∫ 1

v

(1− ṽ) f (ṽ) dṽ

}

dF 2 (v)

integrating by parts gives

1

2

{
∫ 1

v

(1− ṽ) f (ṽ) dṽ · F 2 (v) |10

}

+

1

2

∫ 1

0

F 2 (v) (1− v) f (v) dv

whih shows that this onditional probability distribution inte-

grates to 1.

• Now that we have the density, we an �nd the expetation of v at
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�rm B onditional on failing to trade with A from the formula

V2 ≡

∫ 1

0

v
∫ 1

v
(1− ṽ) f (ṽ) dṽF (v) f (v) dv

1
2

∫ 1

0
(1− ṽ)F 2 (ṽ) f (ṽ) dṽ

• Now the lik through rate on the lower slot is just the proportion

of all the buyers whose searh osts are less than V2 who fail to

trade when they visit the �rm in the top slot, i.e.,

T2 = (1− V1)G (V2)

• Now we'll use the generi method to work out the bidding rule

• The payo� to the seller - there are a bunh of possibilities - for a

start, we only need to worry about the ases where the seller is

the high bidder, or the seond high bidder. This bid is submitted

at the very beginning before anything is learned about the other

bidders, so being the high bidder involves two ases where eah of

the other two bidders is the seond high bidder.
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• for example, the values of the bidders might be v, v′ and v′′, in

desending order. The probability this happens is f (v′) · f (v′) ·
f (v′′) and in this ase the payo� of the high bidder is

T1 (v − b (v′)) .

• In order to take the expetation aross all possibilities, we need to

start with these, so we'll get

∫ v

0

∫ v′

0

T1 (v − b (ṽ)) f (ṽ) dṽf (v′) dv′ =

∫ v

0

T1 (v − b (v′))F (v′) f (v′) dv′

sine eah of the other bidders ould play the role of the seond

high bidder, we need to take 2 of these, one for eah of the other

bidders.

• then there is the ase where our bidder is the seond high bidder,

say v′ > v > v′′
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• now, take one of the other two bidders to play the role of v′ and

sum to get

∫ 1

v

T2 (v − b (v′′)) f (v′) dv′f (v′′) dv′′ =

(1− F (v))

∫ v

0

(v − b (v′)) f (v′) dv′.

• Again, there are two di�erent bidders who ould play the role of

the high bidder.

• Now we an put it together to make the payo� 2 times

∫ v

0

T1 (v − b (v′))F (v′) f (v′) dv′+

(1− F (v))

∫ v

0

T2 (v − b (v′)) f (v′) dv′
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This has to be larger than

∫ ṽ

0

T1 (v − b (v′))F (v′) f (v′) dv′+

(1− F (ṽ))

∫ ṽ

0

T2 (v − b (v′)) f (v′) dv′

for all vand ṽ. The �rst order ondition for bidding is

T1 (v − b (v))F (v) f (v) + ((1− F (v))T2 ∗ (v − b (v))) f (v) =

f (v)

∫ v

0

T2 (v − b (v′)) f (v′) dv′

whih gives the following result

(v − b (v)) =

∫ v

0
T2 (v − b (v′)) f (v′) dv′

F (v) T1 + (1− F (v))T2
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1.9 Appliations outside aution theory

• (Klemperer) suppose two parties are involved in a lawsuit. The

party that wins the lawsuit gets utility that is θi higher than it

does when it loses (the payo� to losing is normalized to zero).

These payo�s are private and drawn from a ommon monotoni

distribution F

• eah party spends bi defending itself and the party that spends the

most wins the lawsuit

• under standard rules (in the US) eah party pays its own legal fees,

so the winner gets θi − bi

• ould expenditures on legal fees be redued by foring the losing

party to pay the winner some fration of the loser's expenses? what

about foring the loser to pay some fration of the winner's legal

expenses, should there be a minimum legal expenditure required

to win the ase?

• the key insight is that the existing legal system is equivalent from
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a strategi viewpoint to an all pay aution - the party who spends

(bids) the most wins the ase (trades) but all parties pay what they

spent (bid).

• total expeted legal expenditures are equivalent to the seller's rev-

enue in the aution problem

• the minimum expenditure requirement (for example foring lit-

gants to be represented by lawyers) is equivalent to the reserve

prie in the aution

• suppose �rst that there is an equilibrium in whih parties expen-

ditures are inreasing funtions of their gains θ, under the existing

rules a party whose gain is exatly equal to the minimum expendi-

ture requirement annot gain by litigating, nor an they lose sine

they reeive the default payo� 0 by spending nothing, so the rev-

enue equivalene theorem implies that expeted legal expenditures

are

2

∫ 1

r

F (θ)

[

θ −
1− F (θ)

F ′ (θ)

]

F ′ (θ) dθ (8)
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while parties expeted expenditures are equal to the equilibrium

legal expenses

F (θ) θ −

∫ θ

r

F (s) ds

• legal expenditures go to lawyers, so assuming that objetive of the

legal system is to maximize lawyer inome, the optimal expenditure

requirement is to set r suh that

r −
1− F (r)

F ′ (r)

as in the optimal selling mehanism,

• on the other hand, if the objetive is to maximize expeted gains

to litigation less expeted expenditures (and assuming the virtual

valuation is inreasing), the reserve prie 0 satis�es at least the

neessary ondition for optimization (just hek the derivative of

the payo� evaluated at r = 0.

• what about having the loser pay a portion of his own expenses to

the winner as an additional penalty
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• for simpliity assume the loser pays the winner whatever the loser

atually spent litigating the ase

• assume that the equilibrium bidding strategy is inreasing, then

the party with the highest valuation will win the ase. Let s the

minimum expenditure required to litigate the ase. A litigant who

spends exatly s will win and get his value θ (without any transfer

from the other player) if the other player deides not to ontest

• on the other hand, if the other player deides to ontest, the litigant

who makes the minimum expenditure s will lose for sure and be

fored to pay 2s, so the expeted payment is

F (r) s+ (1− F (r)) 2s = s+ (1− F (r)) s

whih should equal F (r) r in order that the marginal partiipant

get exatly 0 surplus

• then by the revenue equivalene theorem, a legal system with min-

imum expenditure s = F (r)r
2−F (r) in whih the loser pays his own ex-

penditure to the winner yields the same expeted expenditures as a
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system where eah litigant pays his own osts and where minimum

expenditures are r

2 Multi-Unit Private Value Autions

• maintaining the assumption that eah bidder wants only a single

unit and that eah bidders' valuation is independently drawn from

the distribution F

• suppose that the seller has n > K > 1 units to o�er for sale.

• analogously to the ase with a single unit, there are a number of

di�erent ways that the good ould be alloated

1. goods ould be alloated to the K highest bidders at the high-

est rejeted prie

2. again the K highest bidders at the lowest aepted prie

3. K highest bidders are alloated, eah pays the prie that he

or she bids
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4. K objets ould be autioned one at a time to the K highest

bidders

• Revenue Equivalene Theorem for Multiple Units: Suppose that

the aution rules and equilibrium are suh that for every vetor

θ ∈ Θn
of valuations, the buyers with the K highest valuations

trade if and only if their valuations are at least r, while buyers

whose valuations are exatly equal to r get zero expeted payo�.

Then the expeted payment by a buyer of type θ is given by

∫ θ

r

s

(

n− 1
K

)

Fn−K−1 (s) (1− F (s))
K−1

f (s) ds (9)

• Proof: By assumption, only the highest K valuation buyers will

trade in equilibrium, so if the Kth

highest valuation among the

other buyers exeeds θ the buyer will fail to trade. Conversely,

if this Kth

highest valuation is less than θ, then the buyer will be

one of the winning bidders provided his own valuations exeeds the

seller's reserve prie r. The density for the Kth

highest valuation
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among the other N-1 bidders is

(

n− 1
K

)

Fn−K−1 (s) (1− F (s))K−1 f (s)
(there is one bidder among the other n − 1 who has valuation

exatly equal to s, K − 1 whose valuations exeed s, and n − 1 −
(K − 1) − 1 left over whose valuations are lower than s. Then

there are

(

n− 1
K

)

di�erent groups of bidders among the other

n-1 bidders who we ould use as high bidders). So the probability

with whih the buyer trades is

Q (θ) =

∫ θ

0

(

n− 1
K

)

Fn−K−1 (s) (1− F (s))
K−1

f (s) ds

when the buyers' valuation exeeds r and Q (θ) = 0 otherwise.

• inentive ompatibility gives

Pi (θ) =

∫ θ

0

Q (s)′ sds
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as above, so substituting for Q′

gives the result.

2.1 Highest Rejeted Bid Aution (uniform prie au-

tion)

• suppose the K highests bidders trade and pay the prie bid by the

K +1 highest bidder (that is the highest bid that fails to win) and

that the seller sets reserve prie r.

• then the prie paid by a buyer who trades is independent of the

prie that he bids, and bidding true valuation is a weakly dominant

strategy, and a Bayesian equilibrium. Sine this bidding funtion is

monotonially inreasing, the buyers with the highest n valuations

will trade as required by the revenue equivalene theorem

• sine a buyer with valuation r will only trade when the Kth

highest

bid among the other buyers is below r a buyer with this valuation

will pay r when he wins and nothing if he doesn't so his expeted

payo� is zero as required by the revenue equivalene theorem to
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expeted payments are given by (9) and seller revenue is just n

times the expetation of this payment over θ

2.2 Pay your own bid (Disriminatory Prie Au-

tion)

• suppose K highest bidders trade, and eah pays his own bid, again

with reserve prie r

• assume for the moment that this indiret mehanism and the equi-

librium assoiated with it satisfy the assumptions of the revenue

equivalene theorem

• then the expeted payment is equal to the bid multiplied by the

probility of winning, or

b (θ)

∫ θ

0

(

n− 1
K

)

Fn−K−1 (s) (1− F (s))K−1 f (s) ds =
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∫ θ

r

s

(

n− 1
K

)

Fn−K−1 (s) (1− F (s))
K−1

f (s) ds
by (9), and this an be solved for the equilibrium bidding rule

3 Approximation

• return to a simple �rst prie aution with asymmetri bidders.

Values are again independently distributed on [0, 1], but in this

setion they are not identially distributed, so Fi is the probability

distribution for bidder i's value.
• As we have disussed before, equilibrium bidding rules are di�erent

in this ase

• example bidder 1 has distribution F1 (x) = x (i.e. U[0, 1]) while

bidder 2 has distribution F2 (x) =
x
2 (i.e, U [0, 2]).
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• verify for yourself that the rules

b1 (θ) =
2

3θ

(

2−
√

4− 3θ2
)

and

b2 =
2

3θ

(

√

4 + 3θ2 − 2
)

are equilibrium bidding rules by verifying that these both solve the

di�erential equations that haraterize the equilibrium.

• Sine b1 (θ) ≥ b2 (θ) bidder 2 an lose the aution even though he

has a higher value than bidder 1 - so the aution equilibrium is

ine�ient in the sense that with stritly positive probability, the

aution will give the good to the wrong person.

• the aution is also not revenue maximizing. Player 2 wins the

aution when

θ2 >
1

√

1
θ2

1

+ 3
4
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while revenue maximization requires that player 2 be given the

good when θ2 > θ1 +
1
2 (use the virtual valuations).

• so even though the aution ould be made e�ient by reverting to

a seond prie aution, this might involve a loss in revenue (I am

not sure, one ould probably do the alulation numerially).

• This leads to an unpleasant situation in whih you know that the

aution you have designed isn't right, but the only alternatives you

an think of are just di�erent (better in some ways worse in others).

• the omputer sientists �gured out that you ould atually quantify

the loss without having to �gure out the optimal mehanism

• there is a large literature on this (see the artile by Jason Hartline

in the readings) - I'll illustrate the methods with surplus and the

�rst prie aution. Here is the theorem

• Theorem For any n player �rst prie aution with values inde-

pendently distributed aording to the pro�le {F1, . . . , Fn}, the
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expeted surplus generated by any Bayesian equilibrium of the au-

tion is at least

e−1
e as large as the maximal expeted surplus.

• for reasons I don't understand, the omputer sientists like to say

the �rst prie aution is a

e
e−1 (or a 1.58) approximation of maximal

soial surplus.

• To see how they prove this, start with an arbitrary bidder in the

aution whose value is θ. From the equilibrium she believes is being

played, she has some belief about the probability distribution of the

highest bid of her opponents. Call this distribution funtion Gi -

and notie that it is di�erent for every bidder.

• Suppose she bids b in the aution. Then the probability distribu-

tion over the bids of the others, along with her own bid determine

her expeted payo� as shown in the following diagram:
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G(θ)

θb

Q(b)(θ − b)

• now observe a seond fat - the expeted value of the highest bid
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of the others is

B̂ ≡

∫ 1

0

bdG (b) =

bG (b)|
1
0 −

∫ 1

0

G (b) db =

∫ 1

0

{1−G (b)} db

by the (hopefully) now familiar tehnique of integration by parts.

• what that means is that the expetation of the highest bid of the

others is given by the area above the urve G (b) as in the following

�gure
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1

1

G(θ)

θb
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• �nally, the maximum possible surplus that ould be earned by a

bidder whose value is θ is given by the area of the following ret-

angle
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1

1

G(θ)

θb
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• putting this all together gives a �rst bit of approximation
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1

1

G(θ)

θb

Q(b)(θ − b)
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• it kind of looks like the area in blue plus the area in green together

would have almost the same area as the dashed square that rep-

resents the buyer's potential surplus. This hints at the notion of

approximation.

• if you wanted to prove that the blue area and the green area to-

gether were at least half the buyer's surplus, it wouldn't be so hard.

Here is how you would do it

•
Q (b) (θ − b) + B̂ ≥

Q

(

θ

2

)(

θ −
θ

2

)

+ B̂ =

∫ θ
2

0

{(

θ −
θ

2

)

+ b

}

dG (b)+
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∫ 1

θ
2

bdG (b) ≥

∫ θ/2

0

θ

2
dG (b) +

∫ 1

θ/2

θ

2
dG (b) ≥ θ/2

• the �rst inequality follows from the fat that the distribution G is

assoiated with a Bayesian Nash equilibrium. The equality that

leads to the third line follows beause it is a �rst prie aution.

• Notie that this inequality doesn't depend on the underlying dis-

tributions of buyers' values, or what Bayesian equilibrium is being

played.

• this is the method of approximation. The only ompliation is that

the approximation isn't very good. It ould obviously be tightened

beause the term that appears in the �rst integral is stritly larger

than

θ
2 . Sine we want to use this in the real approximation we are

looking for we an go a step further.
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• Theorem: (Hartline) If a bidder has value θ and bids b as part

of a Bayesian Nash equilibrium, then

˙
Q (b) (θ − b) + B̂ ≥ e−1

e θ

• Proof: The expeted payo� to the bidder in a Bayesian equi-

librium is at least as large as her payo� when she uses any other

strategy. Fous on the strategy that draws a random outome from

the interval

[

0, e−1
e θ

]

using a mixed strategy that uses a distribu-

tion with density

1
θ−b̃

(in other words, the probability with whih

the bidder bids something less than or equal to b using this strat-

egy is

∫ b

0
db̃
θ−b̃

. (Verify for yourself that

∫
e−1

e
θ

0
db̃
θ−b̃

= 1 so that this

is a proper density).

Now following the logi above

Q (b) (θ − b) + B̂ ≥

∫
e−1

e
θ

0

{

∫ b

0

b
1

θ − b̃
db̃+

∫
e−1

e
θ

b

{(

θ − b̃
)

+ b
} 1

θ − b̃
db̃

}

dG (b)+
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∫ 1

e−1

e
θ

bdG (b) =

∫
e−1

e
θ

0

{

∫
e−1

e
θ

b

1db̃+ b

}

dG (b) +

∫ 1

e−1

e
θ

bdG (b) =

∫
e−1

e
θ

0

{

e− 1

e
θ

}

dG (b) +

∫ 1

e−1

e
θ

bdG (b) ≥

e− 1

e
θ.

• this theorem provides a tool to get the result we are more interested

in.

• Let bi (θ) be an arbitrary bidding rule for bidder i in an aution

where values are independently distributed aording to the distri-

bution funtions {F1, . . . , Fn}. Suppose the Fi are all ontinuously
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di�erentiable, in partiular so that no two θi an be the same with

positive probability. Suppose the seller in a �rst prie aution has

zero ost. Suppose {qi}i=1,...,n is the alloation rule supported

by awarding the good to the person who submits the highest bid.

Then the expeted surplus generated by the aution is

∫

· · ·

∫

V (θ) dF1 . . . dFn =

∫

· · ·

∫ n
∑

i=1

qi (θ) θidF1 . . . dFn

≡

∫

· · ·

∫ n
∑

i=1

qi (θ) (bi (θi) + (θi − bi (θi))) dF1 . . . dFn

=

∫

· · ·

∫ n
∑

i=1

qi (θ) bi (θi) dF1 . . . dFn+

∫

· · ·

∫ n
∑

i=1

Qi (θi) (θi − bi (θi)) dF1 . . . dFn
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• In words, the expeted surplus in an aution is always equal to

expeted revenues of the seller plus the sum of the expeted payo�s

of the buyers.

• Maximal expeted surplus is

max
{qi}i=1,n

∫

· · ·

∫ n
∑

i=1

qi (θ) θidF1 . . . dFn

subjet to the onstraint that qi (θi) ∈ R
+;

∑n
i=1 qi (θi) ≤ 1 and

qi (θ) = 1 if bi (θi) > bj (θj)∀j 6= i.

• Now we get the main approximation theorem.

• Theorem (Hartline) The expeted surplus generated by the au-

tion must be at least

e−1
e times the maximal expeted surplus.

• Proof: We start with the result of the value approximation theo-

rem given above

Q (bi (θ)) (θi − bi (θ)) + B̂i ≥
e− 1

e
θi
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Suppose that q∗i (θ) is the outome funtion that maximizes ex-

peted surplus (obviously this outome funtion is the one that

gives the good to the buyer with the highest value - as you reall

this isn't what the aution does).

• Trivially sine q∗i (θ)is always less than or equal to 1, we must then

also have (nothing deep, we are just shrinking one term on the left,

but the whole thing on the right)

Q (bi (θ)) (θi − bi (θ)) + B̂iq
∗
i (θ) ≥

e− 1

e
θiq

∗
i (θ) .

Now sum these terms over i and take expetations with respet to

the θi.
n
∑

i=1

∫ 1

0

Q (bi (θi)) (θi − b) dFi (θi)+

∫

· · ·

∫ n
∑

i=1

B̂iq
∗
i (θ) dF1 . . . dFn ≥
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e− 1

e

∫

· · ·

∫ n
∑

i=1

θiq
∗
i (θ) dF1 . . . dFn.

Notie that the �rst term on the left is the sum of the expeted

payo�s of the buyers, while the term on the right is the maximal

expeted surplus.

The last step omes from the following simple logi

∫

· · ·

∫ n
∑

i=1

B̂iq
∗
i (θ) dF1 . . . dFn =

∫

· · ·

∫ n
∑

i=1

max
θj 6=θi

bj (θj) q
∗
i (θi) dF1 · · · dFn ≤

∫

· · ·

∫ n
∑

i=1

max
θi

bi (θi) q
∗
i (θi) dF1 · · · dFn
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where the last term is the expeted revenue in the aution. The

bottom line is that the sum of the expeted payo�s to buyers plus

the expeted revenue to the seller is always at least

e−1
e of the

maximal expeted surplus.

4 Interdependene

• players types Θi aren't their values, they are just signals that pro-

vide information about value - assume types for eah player are

drawn from losed intervals.

• player i′s value for the objet being sold in the aution is

vi (θ1, . . . , θn)

• in ase the buyer's value also depends on information possessed by

the seller, let θ0 be the seller's type, so that

vi (θ0, . . . , θn)
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• In either ase, vi is assumed to be non-dereasing in eah of its

arguments, and stritly inreasing in θi

• the distribution of values is given by F (θ1, . . . , θn) with ontinuous

and di�erentiable density f (θ1, . . . , θn)

• an environment is symmetri if vi = vj = u for all i and j and if

the density is symmetri in the sense that if the vetors θ and θ′

are permutations of one another, then f (θ) = f (θ′)

• de�ne

v (θi, y) = E

{

u (θi, θ−i) |θi; max
j 6=i

θj = y

}

• Theorem: In a seond prie sealed bid aution in a symmetri

environment, there is a Bayesian Nash equilibrium in whih all

bidders use the the bidding rule b (θi) = v (θi, θi).

• Proof: The payo� a buyer gets when his type is θ and his bid is

b′ and all other bidders are using the rule b (θi) = v (θi, θi) is given
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by

∫ b−1(b′)

0

(v (θi, y)− b (y)) g (y|θi) dy
where g (y|θi) is the density of the maximum value of the θ−i. Then

by substitution, this is

∫ b−1(b′)

0

(v (θi, y)− v (y, y)) g (y|θi) dy.

• Sine b is monotonially inreasing in a symmetri environment,

b−1

is monotonially inreasing, so raising the bid results in the

integral being taken over larger values of y. Again, using mono-

toniity, y > θi if and only if v (y, y) > v (θi, y), so, for example,

if b′ > v (θi, θi) the intergral will inlude an interval along whih

v (θi, y)− v (y, y) is negative, and this interval ould be eliminated

by reduing the bid. Exatly the same argument shows that bids

below are dominated.

• In a button aution (often referred to as an English aution) prie

starts at 0 and rises ontinuously.

0-70



• Eah bidder begins the aution with his/her �nger pressing down

on a button. A bidder who takes their �nger o� the button is

onsidered to be out of the aution and an no longer partiipate.

Everyone observes when someone else takes their �nger o� the but-

ton and the prie that prevailed when this event ours.

• The aution ends when the seond last bidder takes their �nger

o� the button, at whih point the prie stops rising. The winning

bidder is the remaining bidder who pays whatever the prie was

when it stopped going up.

• This is a dynami game in whih at every instant, a bidder who

hasn't yet taken their �nger o� the button sees a sequene of pries

p̂k, p̂k−1, . . . , p̂1 at whih the previous bidders dropped out of the

aution. These are ordered so that p̂k ≥ p̂k−1 ≥ . . . and so on. So

the kth bidder who dropped out of the aution did so at prie p̂k.

• A strategy for a bidder is a plan about when to take their �nger

o� the button. Think of the bid b as the prie at whih the bidder

plans to take her �nger o� the button.
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• De�ne the following bidding rules

b0 (θi) = v (θi, θi, . . . , θi) .

• what that means is that the bidder plans to keep her �nger on the

button as long as the prie is less than b0 (θi) if no one drops out

in the interim.

• sine v (θi, θi . . . , θi) is stritly inreasing by assumption, b0 (θi) is

stritly inreasing, so it has an inverse b−1
0 .

• then, if the �rst bidder to drop out drops out at prie p̂1, de�ne

b1 (θi, {p̂1}) = v
(

θi, θi, . . . , b
−1
0 (p̂1)

)

Here v
(

θi, . . . , b
−1
0 (p̂1)

)

means that the last of the n arguments in

v (θi, . . . , θi) is replaed with b−1
0 (p̂1).

• now using these two bidding rules, we an de�ne the other bidding

rules indutively.
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• suppose that k bidders have dropped out at pries p̂1 ≤ p̂2 ≤ . . . ≤
p̂k, that we have de�ned the monotonially inreasing bidding rule

bk (θi, p̂1, . . . , p̂k), and that another bidder drops out at prie p̂k+1.

Then de�ne

bk+1 (θi, p̂1, . . . p̂k+1) = v
(

θi, . . . , θi, b
−1
0 (p̂1) , . . . , b

−1
k−1 (p̂k) , b

−1
k (p̂k+1)

)

.

• Theorem: The bidding rules bk de�ned above onstitute a (sym-

metri) perfet Bayesian equilibrium for the english aution.

• Proof: Consider any history (p̂1, . . . , p̂k) in whih bidder i still has

her �nger on the button, and suppose that all the other bidders

are using the strategy {bk} as desribed above. Let yk be the kth

lowest type among the types of the other players. Suppose the

urrent prie is p. Then the value of the good to the bidder with

value θi is

E

{

v (θi, θ−i) |y1 = b−1

0
(p̂1) , . . . , yk = b−1

k
(p̂k) , yk+1 ≥ b−1

k
(p) , . . . , yn−1 ≥ b−1

k
(p)

}

≥

v
(

θi, b
−1

k
(p) , . . . , b−1

k
(p) , b−1

0
(p̂1) , . . . , b

−1

k
(p̂k)

)

where in this expression the term b−1
k (p) appears n− k − 1 times.
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• if θi > b−1
k (p), then the previous expression is larger than

v
(

b−1
k (p) , b−1

k (p) , . . . , b−1
k (p) , b−1

0 (p̂1) , . . . , b
−1
k (p̂k)

)

= p
so the payo� to keeping her �nger on the button is larger than

dropping out and getting zero. Conversely, if θi < b−1
k (p) then the

expeted value is less than the urrent prie, and dropping out is

a best reply.

4.1 A�liation

• When the joint distribution of types has a density f , a speial lass

of distributions an be desribed

• De�nition: Variables (θ1, . . . , θn) are said to be a�liated if for

any pair of vetors θ and θ′

f (θ ∨ θ′) f (θ ∧ θ′) ≥ f (θ) f (θ′)

where θ∨θ′ ≡ {max [θ1, θ
′
1] , . . . ,max [θn, θ

′
n]} and θ∧θ′ = {min [θ1, θ

′
1] , . . . ,min .
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