
Auctions

April 4, 2023

In an auction, a single seller tries to sell one unit of some commodity to one
of n different buyers. Only one buyer can buy the unit. The seller’s problem is
to decide who to sell it to, and how much to charge them. We’ll imagine that
sellers are risk neutral expected revenue maximizers. They just want to sell the
good in a way that will maximize their expected revenue. Buyers are interested
in the difference between what an object is worth to them, and what they have
to pay for it. They want to maximize the product of the probability that they
win the auction times the difference between their value and what they expect
to pay for the good when they win.

The thing that makes everyone’s problem hard is that no one knows any of
the buyers’ values. It is a game of incomplete information. In everything that
follows, we’ll make the assumption that values are identically and independently
distributed. To keep things simple, lets just suppose that this distribution has
its support on the interval [0, 1], meaning that if F (x) is the probability that
a certain bidder’s valuation is less than or equal to x, then F (0) = 0 and
F (1) = 1. Otherwise, lets suppose this distribution has a density given by
f (x). This means, of course, that F (x) =

∫ x

0
f (t) dt.

The idea here is that each bidder believes that each of the other bidders has
a value that is somewhere between 0 and 1, and that F (x) is the probability
that this value is less than or equal to x.

Second price auction

In a sealed bid second price auction, each bidder submits a bid to the seller.
The seller then chooses the bidder who submits the highest bid, and offers him
the good at a price which is equal to the second highest bid that was submitted.

To describe the payoff in the auction, let b be the vector consisting of the n

bids submitted to the auction. A player who has value vi has payoff

V (bi, b−i, vi) =

{

vi−maxj 6=i bj

|{j′ 6=i;bj′=bi}|+1
bi ≥ bj∀j

0 otherwise.
(1)

There are two cases, if your bid isn’t the highest bid, you get nothing. If your
bid is highest, you have the same chance as each of the other bidders whose bid
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is also highest. So for example, if you are highest and tied with another bidder
for highest bid, you will trade with probability 1

2 .
The notation |{j′ 6= i; j′ = maxj 6=i bj}| means to count (||) the number of

elements in the set consisting of all the others who are tied with you as highest
bidder.

As you’ll see, ties won’t be much of an issue as long as the distribution
function F (·) is continuously differentiable.

No bidder knows what the other bidders will bid. To handle this, we assume
that each bidder has a plan, say b (v) that describes what he or she plans to
bid for each possible value that they might have. In that case, what the bidder
expects to get from a bid b′ is

Ev−i
V
(

b′, {b (vj)}j 6=i
, vi

)

. (2)

Notice that the expectation is taken of the values of the other players which
the bidder doesn’t know. What we assume the bidder does know is the plans of
the other players. This is a fundamental part of Nash equilibrium - the players
correctly guess what the other players plan to do.

A (symmetric) Bayesian Nash equilibrium of the second price auction is a
bidding rule b∗ such that

Ev−i
V
(

b∗ (vi) , {b
∗ (vj)}j 6=i

, vi

)

≥ Ev−i
V
(

b′, {b∗ (vj)}j 6=i
, vi

)

for each pair (i, vi).
Lets solve the second price auction using pure math, assuming that all bid-

ders are using the rule b (v) and assuming there are only two bidders. If you
think you know the rule b (v) that the other player is using, then all you really
have to do is to figure out for any bid b′ whether or not the other player’s value
is high enough for him or her to outbid you. One way to think about this is
to imagine that when your value is v instead of bidding b (v), which is what
you expect everyone else to do if they had the same value, you could submit b′,
which is the bid you would have submitted if your value were v′ instead of v.
Then you could write your payoff as if you were using the rule b (·), just like the
other player, but pretending to have value v′ instead of v. Then you know the
other player would outbid you if their value were larger than v′.

Specifically, in the two bidder case, your payoff would then be

∫ v′

0

(v − b (ṽ)) f (ṽ) dṽ.

Since the rule b (·) that each player is using should be a best reply to against
the belief that the other player is also using that rule, this payoff should be
maximized when v′ is equal to v, your real value. What that means is that

d

dv′

∫ v′

0

(v − b (ṽ)) f (ṽ) dṽ

∣

∣

∣

∣

∣

v′=v

= 0 (3)
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by the usual way we find the maximum of a function. Taking the derivative
gives the condition (v − b (v)) f (v) = 0 which can only be true when b (v) = v.
Now you know one way to show that bidders in a second price private value
auction will bid their value.

Diversion: Fixed points

Let x ∈ [0, 1] and consider the function 1
4 + 1

4x. This function takes and x and
transforms it into a number that lies in the same set that x does. So we could
write

T (x) =
1

4
+

x

4
.

A fixed point of the transformation T is a number x∗ such that T (x∗) = x∗.

Obviously there is only one fixed point for this T , x∗ = 1
3 . Most equilibrium

concepts in economics involve fixed points. For example, let D (p) and S (p)
be demand an supply curves written with p on the vertical axis and q on the
horizontal axis. Here is a transformation

p′ = S(D−1 (p))

Make sure you draw a little picture of this transformation so you can see what
it is doing. Convince yourself that any fixed point satisfying p∗ = S

(

D−1 (p∗)
)

is a market clearing price. If you choose some linear demand and supply curves,
I am sure you can find the corresponding fixed point.

We are looking for an equilibrium for an auction, so you can use fixed points.
The only leap you have to make is to realize that you can transform functions
into new functions the same way you can transform numbers into new numbers.
The approach we used for the second price auction is just like this.

Start with an arbitrary function b (v) which is a non-decreasing continuous
function that converts a number in [0, 1] into another number in [0, 1]. Now
instead of transforming numbers, lets transform the whole function b. We’ll do
it this way

b̃ (v) = b

(

argmax
v′

∫ v′

0

(v − b (ṽ)) f (ṽ) dṽ

)

Notice that whenever the argmax of
∫ v′

0
(v − b (ṽ)) f (ṽ) dṽ is not equal to v

then b̃ (v) and b (v) will be different. So just like the two previous examples, we
could look for a fixed point by finding a function b∗ (v) such that

b∗ (v) = b∗

(

argmax
v′

∫ v′

0

(v − b∗ (ṽ)) f (ṽ) dṽ

)

.

where we say two function b̃ and b are equal if they are equal for all arguments.
The argument in the previous section shows you how to find a fixed point for a
functional transformation.
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Boilerplate

If that seems mysterious, and you are wondering why it works out that way,
here is another argument. If bi is a bid for player i and b−i are the bids of the
other players, then there are a bunch of possibilities.

1. bi ≥ bj∀j (i is the winning bidder) and vi > maxj 6=i bj . Good news, the
bidder gets a positive payoff. As long as his bid remains above maxj 6=i bj
the bidder continues to make this positive payoff. So the bidder would be
just as happy to bid vi.

2. bi ≥ bj∀j (i is the winning bidder) and vi ≤ maxj 6=i bj . Bad news, the
bidder is worse of buyer because he/she pays too much. If she changes her
bid to vi she either won’t care, or will be strictly better off, depending on
whether bi < maxj 6=i bj .

3. bi ≤ maxj 6=i bj . Loser - gets nothing. Then if she switches her bid to vi,
one of two things will occur, either vi ≤ maxj 6=i bj , in which case i will
still be a loser. Otherwise, i would become the high bidder, but pay less
than her value, which is better than nothing.

The upshot is that whatever the bids submitted by the other players, i can do at
least as well by bidding vi and sometimes she will do strictly better. Since the
expectations used in (2) just consider all the possible profiles of bids, it must
be that the expected payoff a player receives by using the rule b∗ are at least
as high as the payoff she gets from using any alternative bidding rule no matter
what the other players are doing. Now just continue - if there is an equilibrium
b∗ then replace b∗ with b̂ (v1) = v1 for player 1. This may improve 1’s expected
payoff, but will never hurt it. If 1 adopts this new strategy, then the other
players might be hurt, but even if they are, we can make the same argument for
player 2, then 3, and so on, until we have replaced all the bidding rules with b̂.
At that point we won’t be able to improve any player’s payoff. So b̂ (vi) = vi
must be a Bayesian Nash equilibrium.

Maybe this will help you see the reasoning behind (3). If b′ is less that v,
then sometimes you are going to lose auctions you might have won at prices less
than your value. You could win these auctions by raising the bid to v. The rest
of the time you won’t care one way or the other which of the bids b′ or b you
had submitted. So the derivative in (3) evaluated at v′ < v must be positive.
Similarly if you choose v′ > v, then you will sometimes be winning auctions and
paying prices that are higher than what the good is worth to you. The rest of
the time, it won’t matter. So the derivative in (3) will be negative. The upshot,
just bid v.

Lets check some of the implications of this. If a bidder wants to figure
out how likely it is he or she will win in equilibrium, they just compute the
probability that their value is highest. This is the probability that each of the
other bidders has a lower value than they do, and this is just F (v)

n−1
. So the

probability they win the auction when their value is v is going to be F (v)
n−1

.
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What are they likely to pay if they win? This is the expectation of the highest
value of the other bidders, conditional on the other bidders having values lower
than v. This is

(n− 1)
∫ v

0
ṽFn−2 (ṽ) f (ṽ) dṽ

Fn−1 (v)
. (4)

Lets go over this calculation. Pick one of the other bidders, say bidder 1, and
imagine that his value is ṽ. This event occurs with probability f (ṽ). In that

case, the probability that all the others have lower values than his is F (ṽ)
n−2

,
because there are n−2 bidders other than you and bidder 1. Of course, it could
also have been bidder 2 who had this value ṽ. Summing this up over the n− 1
bidders other than yourself, this says that the probability that the highest value
bidder among the others has value ṽ is (n− 1)F (ṽ)

n−2
f (ṽ).

Now we want to use Bayes rule. You know that your value is v. So the joint
probability that your value is v and the highest among the others is ṽ is just
(n− 1)F (ṽ)

n−2
f (ṽ), as we just calculated as long as ṽ < v. For Bayes rule,

we then need to divide by the probability that your value v is highest, which is
just Fn−1 (v). We then take the expectation using this conditional probability
distribution.

In words, we just decided that the amount you should expect to pay if your
value is v in a second price auction is given by (4).

Problems

1. Work out the expected payment when there are 2 other bidders and F is
uniform (i.e. F (x) = x). Now do the same when there are three other
bidders. How does the amount you expect to pay change between 2 and
3 other bidders?

2. Answer question 1 again, but assume that F (x) = x2. What impact does
this change in the distribution have.

Why worry about the expected payment?

If you bid in a second price auction, you will do okay as long as you don’t
bid more than your value. In a way, there isn’t really much reason to do the
calculation we did above. However, it is an important calculation for the seller.
Lets do the calculation from the seller’s point of view. Suppose that v is the
highest value among the bidders in the auction. Then the revenue that the seller
should expect to get from the bidder who wins the auction is exactly what that
bidder expects to pay, i.e., the expression (4). Now integrate this over all the
possible values bidder 1 could have, then multiply it by n because there are n

bidders in all, and you get the revenue the seller expects to get from the second
price auction

n

∫ 1

0

(n− 1)

{
∫ v

0

ṽFn−2 (ṽ) f (ṽ) dṽ

}

f (v) dv. (5)
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Problems

1. Calculate expected revenue when F (v) = v and show that it is equal to
(n−1)
n+1 .

First Price Auctions.

It is interesting that second price auctions have an equilibrium where bidders
bid their true values. Yet one might wonder whether there might not be better
ways to sell something. For example, imagine that you are trying to sell some
public land to make money for taxpayers. You decide to hold a second price
auction. Some big company gives you a bid of $1 million. By what we have
just said, that is the amount the company thinks the land is worth. Why not
just charge them $1 million - that seems better for taxpayers. After all, why
deliberately charge the company something less than what you know they are
willing to pay.

The answer is that if they know you are going to do this, they won’t bid $1
million, they will bid something considerably less. If you want to figure out if it
would be better to charge them what they bid, you need to figure out exactly
what they will bid.

To do this we can use the same approach we used above. Start with the
payoff function. Since we changed the rules of the auction, the payoff function
for a bidder becomes

V (bi, b−i, vi) =

{

vi − bi bi ≥ bj∀j

0 otherwise.

As before, we’ll ignore ties. This payoff function itself doesn’t allow you to figure
out what to bid because you aren’t sure what the b−i are going to be. Bayesian
equilibrium says that you should use your prior beliefs about the distribution
of valuations to figure out what to do. You believe that each bidder has a value
that is independently drawn from the same distribution F . So we proceed by
assuming that each bidder will be expected to make a bid that depends on his
or her valuation. Lets suppose that if two bidders have the same valuation, we
expect them to have the same bid. Then what you are expecting to happen in
the auction is that a bidder who have a valuation v will bid b (v). We’re still
not sure what b (v) is, but it is a start.

Now suppose we guess that b (v) is an increasing function of v, which means
bidders with higher values probably bid more. Then we can evaluate the ex-
pected payoff associated with a bid b′ as follows

Eb−i
{V (b′, b−i, vi)} = (vi − b′) Pr {every bj is less than b′} =

(vi − b′) Pr (every vj is such that b (vi) < b′) =

(vi − b′) Pr (every vi is less that v
′ where b (v′) = b′) =

(vi − b′)Fn−1
(

b−1 (b′)
)

=
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(vi − b (v′))Fn−1 (v′)

As we pointed out last time, bidding b′ is the same as acting as if your value is
v′ (even though it isn’t) and using the rule b.

If the function b is a Bayesian Nash equilibrium, then bidding b (v) when
your value is v should be a best reply to what you think others are doing, no
matter what your actual value v. This is the same as saying that

(vi − b (vi))F
n−1 (vi) ≥ (vi − b (v′))Fn−1 (v′) .

In particular, that means that the derivative of the function

(v − b (v′))Fn−1 (v′)

with respect to v′ should be zero when v′ = v. In other words

(v − b (v)) (n− 1)Fn−2 (v) f (v) = b′ (v)Fn−1 (v) . (6)

One way we could approach this is to solve for b′ (v)

b′ (v) =
(v − b (v)) (n− 1) f (v)

F (v)
. (7)

If you observe that must hold for every value of v, it becomes a differential
equation that we could try to solve.

An aside:

I did say that equilibrium in economics was a fixed point. Notice that if I
integrate both sides of (7) I get:

∫ v

0

b′ (ṽ) dṽ =

∫ v

0

(ṽ − b (ṽ)) (n− 1) f (ṽ)

F (ṽ)
dṽ = b (v) .

I know the constant I should add must be zero because a bidder with zero value
should bid 0. Not every function b will solve the differential equation, so I can
just recast this problem by defining a transformation

T (b (v)) =

∫ v

0

(ṽ − b (ṽ)) (n− 1) f (ṽ)

F (ṽ)
dṽ

So finding the equilibrium bidding rule is the same as finding a fixed point to
the transformation T , ie. find b∗such that

T (b∗) = b∗.
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Back to the solution.

There is another way to get the solution that will help in our comparison to the
second price auction. Lets just rewrite (6) as

v (n− 1)Fn−2 (v) f (v) = b (v) (n− 1)Fn−2 (v) f (v) + b′ (v)Fn−1 (v) .

Now observe that the right hand side of this expression is just the derivative of
b (v)Fn−1 (v) with respect to v.

What that means is that uniformly in b

d
{

b (v)Fn−1 (v)
}

dv
= v (n− 1)Fn−2 (v) f (v) .

Then we just use the fundamental theorem of calculus, and integrate the deriva-
tive to get the function itself, i.e.

b (v)Fn−1 (v) =

∫ v

0

ṽ (n− 1)Fn−2 (ṽ) f (ṽ) dṽ,

or

b (v) =

∫ v

0
ṽ (n− 1)Fn−2 (ṽ) f (ṽ) dṽ

Fn−1 (v)
.

Now you can look back at the expression we got in (4) describing the amount
that a bidder in the second price auction expects to pay conditional on winning
- you will see it is exactly the same. The stunning conclusion is that the amount
that the seller should expect to receive from the winning bidder is exactly the
same in both the first and second price auctions. They produce exactly the
same revenue.

All Pay Auctions.

If you don’t find the relationship between the first and second price auction
surprising, here is an even more surprising result. Many auctions (or at least
things that act like auctions) have the property that the high bidder wins the
auction and pays whatever she bid. Yet everyone else in the auction has to pay
what they bid as well. If you think that sounds unreasonable, that is in many
ways what happens in education. To get a job you spend a lot of money on
education - the most educated person gets the most desirable job. If you don’t
get the most desirable job, you still have to pay for the education you received.

Many kinds of litigation are like this. One party sues the other, then both
lawyer up. The side that spends the most on lawyers wins the case, but both
sides have to pay their lawyers.1 Lobbying is like this. If you are a corporation

1An interesting example of this kind of thing that pertains to another part of this course
is the companies that act as ’patent trolls’. The way patent trolls work is to apply for, or buy
very vague patents, then suing a company for patent violation. Even if the patent doesn’t
apply, the company who is being sued has to defend itself in court, which requires them to
lawyer up in the manner described above. The patent troll then offers to settle out of court
for an upfront payment, which the company will normally pay. This is type of extortion which
is perfectly legal under US intellectual property law. If you are getting bored with auctions,
here is a story about patent trolls - https://www.youtube.com/watch?v=3bxcc3SM KA
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and you need a regulation relaxed or a pipeline approved, you contribute to
party of the ruling candidate. The corporation that contributes the most gets
the rule it wants, but no one gets their money back.

We can find an equilibrium for this sort of thing using the approach above.
Assuming your are starting to get the idea behind Bayesian equilibrium, we can
do it a bit more quickly. Lets suppose the bidders use a monotonic rule b (v) to
decide how much to bid. Once again, if b (v) is a Bayesian equilibrium bidding
rule, then the function

vFn−1 (v′)− b (v′)

should be maximized when v′ = v.
The corresponding first order condition is

v (n− 1)Fn−2 (v) f (v) = b′ (v) .

This is actually really easy because we can use the fundamental rule of calculus
right away to get

b (v) =

∫ v

0

ṽ (n− 1)Fn−2 (ṽ) f (ṽ) dṽ.

If you compare this to the bid in the first price auction, it is much smaller.
However, the total expected payments to the seller are

n

∫ 1

0

b (v) f (v) dv =

n

∫ 1

0

∫ v

0

ṽ (n− 1)Fn−2 (ṽ) f (ṽ) dṽf (v) dv.

If you compare this to our original formula for the revenue in the second price
auction, given by (5), you will see that it is exactly the same.

Optimal Reserve price.

Each buyer in the auction might pay something to the seller. As we reasoned
above, a buyer with valuation v will pay the seller his or her bid b (v) if they
happen to win the first price auction. We now know enough to write down this
payment. The buyer will win the auction with probability Fn−1 (v) then pay
b (v). We showed above that

b (v) =

∫ v

0
ṽ (n− 1)Fn−2 (ṽ) f (ṽ) dṽ

Fn−1 (v)
.

To find the payment the seller expects to receive from a buyer with valuation
v we could then just take the expectation of Fn−1 (v) b (v) across all the values
v the buyer might have. We have n buyers in all so the total expected revenue
for the seller is going to be

n

∫ 1

0

Fn−1 (v) b (v) f (v) dv.
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Substituting in the equilibrium bidding rule gives

n

∫ 1

0

∫ v

0

ṽ (n− 1)Fn−2 (ṽ) f (ṽ) dṽf (v) dv

since Fn−1 (v) cancels itself out. You’ll notice this is the same expected revenue
we calculated for the second price auction. So what we’ll do next is independent
of which particular auction we are interested in. To keep things simple, lets just
keep focus on the first price auction.

To understand why the seller might want to choose a starting bid greater
than 0,it might help to start with a case in which there is only one bidder. If
the seller runs a second price auction, this single bidder will bid his value. The
second highest bid is 0 which is what it is worth to the seller. If the seller
chooses a starting bid of p on the other hand, the high bidder will pay p instead
of 0 provided his value is above p. This represents a benefit of having a starting
bid. The downside is that the buyer may not have a value above v in which
case the seller loses.

It is actually pretty easy to figure out what the seller should do. His expected
revenue would be

p (1− F (p)) .

Obviously any positive starting bid would be better than 0. By the same token,
it wouldn’t be wise to set the starting bid to 1 because no one would be willing
to pay it.

The best starting bid is the one that maximizes this expectation. You can
finding it as you always do using a first order condition

d

dp
p (1− F (p)) =

(1− F (p))− pf (p) = 0.

In other words, you would choose p to satisfy

p−
1− F (p)

f (p)
= 0.

The basic point, as a seller you are always better off if you can commit
yourself not to trade with very low value buyers. Since having an auction with
one buyer is a special case, this suggests that seller will want to do the same
thing even if there are many buyers.

The most complicated part of the auction would seem to be to figure out
how the change in the starting bid or reserve price will affect the bidding rule.
You know from the logic of the second price auction that it won’t - buyers will
still bid their values. So choosing a reserve price in the second price auction
directly involves choosing the lowest value you are willing to sell to.

It is just slightly more complicated in the first price auction. Go back to the
basic payoff function for a bidder in the first price auction, given by

(v − b (v))Fn−1 (v) .
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If we put the first order condition together with the fixed point restriction as
we did above we get

v (n− 1)Fn−2 (v) f (v) =
d

dv
Fn−1 (v) b (v) .

Recall what we did with this condition was to integrate both side and use the
fundamental theorem of calculus. However, remember when you do this, there
is always a constant left over (the integral of a derivative only gives you the
function itself if you know the level where it started).

When there is no reserve price the constant is zero just because we know
that a bidder with value 0 should bid 0. This means the bidding rule must pass
through the point (0, 0).

When there is a reserve price, the lowest acceptable bid will be r. Whichever
type is supposed to bid r, we know that this type should be the lowest typ who
submits an acceptable bid. If this type earns strictly positive payoff by doing
so, lower types will also want to bid, which can’t be true. So whatever type
is supposed to bid r should get exactly zero surplus whether they win or not.
Evidently the type who submits a bid equal to r should have type eactly r.

So the equilibrium bidding rule has to satisfy b (r) = r. Putting that together
with the first order condition gives us the rule

b (v) = r +

∫ v

r
ṽ (n− 1)Fn−2 (ṽ) f (ṽ) dṽ

Fn−1 (v)
.

So lets use that rule to calculate the seller’s revenue from a first price auction.

n

∫ 1

r

{

rFn−1 (r) +

∫ v

r

(ṽ (n− 1)Fn−2 (ṽ) f (ṽ) dṽ)

}

f (v) dv.

The inner integral, as we have seen is

rFn−1 (r) +

∫ v

r

(ṽ (n− 1)Fn−2 (ṽ) f (ṽ))dṽ =

rFn−1 (r) +

∫

ṽdFn−1 (ṽ)

which can be integrated by parts to get

rFn−1 (r) + vFn−1 (v)− rFn−1 (r)−

∫ v

r

Fn−1 (ṽ) dṽ.

Then our expression for seller revenues becomes

n

∫ 1

r

{

vFn−1 (v)−

∫ v

r

Fn−1 (ṽ) dṽ

}

f (v) dv =

n

∫ 1

r

(

vFn−1 (v)
)

f (v) dv − n

∫ 1

r

∫ v

r

Fn−1 (ṽ) dṽf (v) dv.
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Now we can pull out the second double integral

∫ 1

r

∫ v

r

Fn−1 (ṽ) dṽf (v) dv.

Integrating by parts this is equal to

∫ v

r

Fn−1 (ṽ) dṽF (v)

∣

∣

∣

∣

1

r

−

∫ 1

r

Fn (v) dv =

∫ 1

r

Fn−1 (v)
1− F (v)

f (v)
f (v) dv.

Finally we can substitute this back into the revenue expression to get

n

∫ 1

r

Fn−1 (v)

(

v −
1− F (v)

f (v)

)

f (v) dv,

which is the expression we want to work with.
All that is left is to choose the lowest value buyer that the seller wants to

sell to by choosing r to maximize the following expression

n

∫ 1

r

Fn−1 (v)

(

v −
1− F (v)

f (v)

)

f (v) dv.

The first order condition is
(

v −
1− F (v)

f (v)

)

= 0.

Now we are done. We choose the lowest valuation the seller wants to deal
with by solving this first order condition. In the second price auction we’d set
the starting value to this lowest valuation. In a first price auction we set the
reserve price equal to the equilibrium bid of a bidder with this valuation.
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