
Position Auctions

One application of auctions which has become increasingly important over the last
few years is their application to online advertising. Hallerman1 estimates that online
advertising revenues in the US in 2007 were at least $21 billion. [?] estimates that
revenues associated with the auction of search terms by industry leaders Google and
Yahoo in 2005 were at least $11 billion. [?] provide a less specific and more conser-
vative estimate of $10 billion. Either way, a very large chunk of total advertising
revenue on the internet.

Auctions are used to determine which urls are displayed in the “Sponsored Links”
column of the google search page, and the “Sponsored Results” column on Yahoo.
These auctions are typically referred to as Position Auctions. The technology be-
hind these is remarkable. When a search word is entered, a page is returned with a
set of search results (sometimes referred to as ’organic links’) along with a series of
sponsored links. The primary difference between the two is that the sponsored links
almost always offer to sell you something. The organic links may or may not involve
sales. The sponsored links are useful provided they contain items the person looking
at the page is likely to want to buy.

The way the urls are made relevant is to associate with each search term, a set
of positions.2 The first position is the place at the top right of the page where the
first sponsored link will be placed, the second position is the second highest link that
will be displayed, and so on. Advertisers who are interested in a particular search
term can then bid for that position in an auction. When you enter your search term,
google checks for bids associated with that search term, then puts the link associated
with the advertiser who submitted the highest bid in the first position3, the second

1Hallerman, D (2008) “US Online Advertising: Resilient in a Rough Economy”, eMarketer,

March.
2It is even more sophisticated than this since Google has quite a bit of information about the

viewer who has entered the search term. When the viewer sends his search request to Google, his
browser passes a cookie to the google server. The cookie doesn’t identify the viewer directly, but it
provides an id that can be used to view a database that contains information about past searches
that have been made from the same browser. By viewing these, Google can make a good guess
about whether the viewer is male or female, rich or poor, young or old, etc. The ip address of the
browser can be used to determine where the viewer is located geographically. Finally, Google knows
how likely it is that the viewer using the current browser will actually follow a sponsored link. Bids
that advertisers submit can be conditioned on all these things.

3This isn’t quite correct. In fact what they do is to give each advertiser a score based on how
much revenue they expect to earn from that advertiser given the bid they have submitted. The
winner of the auction is the advertiser whose bid generates the highest expected revenue given his
score. We use the simpler high bid auction to make things a bit simpler below.
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highest bidder in the second highest position, etc, before sending the page back to
you. In other words, every Google page view results in a new auction being held. In
this way, we are all involved in a large number of auctions.

The payment that a bidder makes depends on the number of viewers who actually
click on the ad. To give some idea of what is involved, Google estimates that bidders
who want to have their link displayed in the third position of the auction associated
with the search phrase “luxury hotels in London” would have to pay about $3.04 per
click.

Given the enormous number of times Google and Yahoo are used to conduct in-
ternet searches each day, even a tiny probability of clicking on a sponsored ad will
result in large revenues for the search sites. Tweaking the design of the auction by
modifying reserve prices and limiting search slots could make a lot of difference to
total revenue. Squeezing revenue is not the only consideration that is important of
course. The search engines also want to attract bidders and viewers who will click
on their ads. We deal with some of these issues later in the chapter on competition
among auctions. This chapter focuses on the case where the search site faces an ex-
ogenous set of advertisers bidding for positions whose value to them is also exogenous.

1. Complete Information

To begin, we will simply assume that there are K positions to be auctioned. Each
position has a value xi describing the expected number of clicks associated with
that position. Assume x1 > x2 > · · · > xK > 0. The idea is that the slot in the
first position is the one that most consumers will click on. For the formalism, think
of xi as the expected number of consumers who will click on the ad in the ith position.

There are m > K firms bidding for the various positions on the web page. Firm
i has characteristic vi that describes its expected profit it receives for any consumer
who clicks on the ad. For simplicity, assume that v1 ≥ v2 ≥ . . . ≥ vm. The expected
revenue of a firm who successfully places their ad in position j is then vixj, the
amount they expect to earn from each consumer who click, times the number who
are expected to click on their ad. Every firm wants the first position, but not all
firms will be willing to pay the same amount for it. All firms, on the other hand,
still earn revenue by placing their ads in lower positions on the web page.
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The position auction works as follows: each firm places a bid bi. Lets order the
bids so that b1 is the highest bid, b2 the second highest, and so on.

The first and most desirable position is awarded to the bidder who submits the
highest bid b1. He or she then pays the second highest bid b2 for each click. Similarly,
the bidder who submits the kth highest bid wins the kth position, and then pays the
k + 1st highest bid for each click he or she receives. Let the bids be ordered from
highest to lowest. If firm i wins the kth best position (with a bid bk) and pays bk+1,
then his or her profit per click is (vi − bk+1). Notice that the firm that wins the Kth

position (i.e., the lowest or worst position) pays the highest bid of among bidders
who did not win a slot. Given some array b1, . . . , bm of bids, bidder i’s total profit
when he wins the kth slot is

(vi − bk+1) xk,

while his payoff is zero if he doesn’t win a slot.

In the notation above, bk is the kth highest bid. We want to discuss bids by some
bidder i and this bid could have any value bk - it depends on the bids of the other
bidders. It is necessary here to develop a slight bit of new notation.
Lets write the bids submitted by all the players as b = {b1, . . . , bm}. In the usual

way, when we want to focus on bidder i, we can use the notation (bi, b−i). This is
a vector of dimension m, the first component being i’s bid, the second component
being the bids of the firms other than i. Now turn bk into a function, and think of
bk (b) to mean the kth highest bid in the array of bids b. So bk (b) is the kth highest
order statistic of whatever vector we use as its argument. For example, b1 (b) is the
highest bid submitted by any player, b2 (b) is the second highest bid in the array b,
and so on.
However, now we can also write bk (b

−i) to be the kth highest bid of the bidders
other than i. To deal with ties, lets write #k (b

−i) to mean the number of bids in b−i

that are equal to bk (b
−i). Also, assume that xk = 0 if k > K.

Now we can write the payoff to each player for every array of bids in a position
auction where the kth position is awarded to the kth highest bidder who is then
charged the k + 1st highest bid for each click. I’ll take a shortcut here to make the
formula somewhat simpler by assuming there are no ties. This will work okay here
because we’ll only discuss some equilibrium outcomes

(1.1) πi
(

b′, b−i
)

=











(vi − b1 (b
−i)) x1 b′ > b1 (b

−i)

(vi − bk (b
−i)) xk k ≤ K; bk (b

−i) < b′ < bk−1 (b
−i)

0 otherwise.
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This is a complicated expression, so well go over it. When a bidder considers a
bid b′, she first checks the bids of the other players (i.e., b−i) and puts them in order
{b1 (b

−i) , . . . , bm−1 (b
−i)}. She then looks to see if her bid b′ is higher than one of

the K highest bids that the others have submitted. For example, if there are four
bidders (as there will be in the graphical illustration below), and they submit the
bids {2, 4, 3, 6} (where 2 is submitted by the bidder with identity 1, 4 by bidder with
identity 2, etc, then bidder 3 first takes the other bids {2, 4, 6} and puts them in
descending order. This gives her the vector b1 ({2, 4, 6}) = 6, b2 ({2, 4, 6}) = 4 and
b3 ({2, 4, 6}) = 2. Suppose there are K = 3 positions to be won in the auction. She
sees that there is a bid by bidder 1 , i.e., 2, which is less than the third highest bid (her
bid of 3). That means she will win the third highest spot, and pay b3 ({2, 4, 6}) = 2
for it. Her profit is then the difference between her value and the price 2 multiplied
by the average number of clicks associated with slot 3. The math expression above
is certainly a more concise way of saying this. It even works when there are more
bidders than slots once you think it through.
This profit function isn’t complete because it ignores ties. Bidding the same as

another player won’t normally be a best reply (unless you don’t expect to win) since,
as we described with auctions, a player who expects to tie with another bidder could
raise their payoff by incrementing their bid slightly.
Now that we have the profit function (1.1), we basically know the payoffs that

each player will get for every array of bids. That is like knowing what payoffs we put
in each cell of the matrix in a bi-matrix game. A Nash equilibrium of this game is
an array of m bids such that no player can improve his payoff given the bids of the
other players.

We can’t really do the gambit thing and check every profile of bids for profitable
deviations. There is a continuum of profiles to worry about. Solving games like
this usually means making a good guess about what the equilibrium looks like, then
trying to verify your guess is an equilibrium. The educated guess here comes from
the observation that if you win a slot at all, you won’t pay what you bid. Instead,
you’ll pay what one of the other players bid. So your only real choice is to decide
which slot, if any, you want. The others’ bids completely determine what you pay
when you win it.

The second part of the guess comes from the intuition that it is likely to be the
case that the bidder with the highest value will want the best slot, the bidder with
the second highest value will want the second best slot, and so on. Why? Well, at
this stage in your reasoning you can’t really articulate why, but is just seems right.
Nash equilibrium is going to give us a conceptual tool that will make it crystal clear
why that intuition will work.
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So lets suppose that the bidder with the highest value per click submits the highest
bid, the bidder with the second highest value per click submits the second highest
bid, and so on. The auction would then award the top slot to the bidder with the
highest value per click. The bidder who wins the kth highest slot would pay the kth

highest bid among the other bidders as we described.
As in a second price auction, a bidder can’t change the price they pay for any

particular slot, but they can change the slot that they win by outbidding someone
else. For example, the bidder who wins the second highest slot could get the best
slot by raising his or her bid until it is as large as the bid of the highest bidder. If
the bidder decides to do this, then he or she could win the top slot, but to get it
they would pay the bid of the high bidder for it according to the rules of the position
auction.4

So from the perspective of an individual bidder who thinks he knows the bids of
the others, he really only needs to choose one of the positions whose ’prices’ are
all defined by the bids of the others. In particular, a set of bids (b1, . . . , bm) will
constitute a Nash equilibrium whenever

(1.2) πi
(

bi, b−i
)

≥ πi
(

b′, b−i
)

for each bidder i.
This is still complicated, so I’ll show how to construct a set of bids that will sup-

port a Nash equilibrium using a diagram and a simple algorithm. We illustrate for
the case where there are three slots and 4 bidders.

The horizontal axis in the picture measures the possible values that firms can have
for slots. The values of the four firms are marked. The dashed line with the lowest
slope (the blue line in the picture) is the graph of the function

(v − v4) x3

which describes the payoff to different firm types when they buy slot 3 at price v4. It
is flat because the slope of the line is x3, the click through rate of the worst available
slot. The advantage of drawing this is that it makes it possible to see the profits the
higher valued firms would make from this slot as well if they decide they want it. For
example, if the bidder with value v2, who is supposed to bid b2 in this equilibrium
decides to cut his bid below b3, then he or she will win slot 3 instead of slot 2, so we
can read their expected profit as the distance from the point v2 vertically up to the
dashed blue line.

4Perhaps you can see why exactly matching the bid of the high bidder (a tie) doesn’t make sense.
If the second highest bidder finds this deviation profitable, then instead of winning the top slot with
probability 1

2
, they could do strictly better by adding a bit to their bid so that they are the highest

bidder instead of one of the highest.
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v4 = b4
v3 v2 v1

v

V

b3 b2

Figure 1.1. Recursive Construction of Slot Prices

I chose b3 very carefully. It is the bid that the third highest bidder is supposed
to make, so it represents payment per click of the second high value bidder. The
dashed red line is the graph of the function

(

v − b3
)

x2.

Since the dashed red and blue lines meet directly above v2, we have

(1.3) (v2 − v4) x3 =
(

v2 − b3
)

x2

In other words, bidder 2 will be just indifferent between winning slot 2 at price per
click b3, and cutting her bid below b3 to win slot 3 at price per click b4 = v4. Actually,
that is exactly how I chose b3, it is the solution to (1.3).
This argument just shows that bidder 2 doesn’t want to lower his or her bid is a

way that will give up slot 2 in exchange for slot 3. Bidder 2 could also try to to raise

her bid to win slot 1. To do that, she will have to match or exceed the bid of the
bidder whose value is v1. This bid is something higher than b2, which means she will
earn no more than

(

v2 − b2
)

x1

from this deviation. To understand this one, I have drawn a green dashed line
corresponding to the graph of the equation

(

v − b2
)

x1.
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Since v2 is less than b2 in the diagram, the expected profit associated with this
must be smaller than the vertical distance from v2 down to the extension of the
dashed green line - in other words, the deviation involves a loss.
We could now continue and notice that b2 (which bidder 1 is paying for slot 1)

has been chosen so that bidder 1 is just indifferent between winning the top slot and
price b2 and lowering her bid to win the second best slot at price b3. Setting b1to be
anything above b2 then completes our argument.
One thing to notice about this example, is that each of the bidders (assuming we

have bidder 1 bid something higher than v1) actually bids strictly more than their
valuation. In one sense this is completely reasonable since no bidder ever expects to
pay their valuation. The reason that is true is that we have modeled this auction
as if bidders have complete information - they know each other’s value. As we will
show later on in this reading, this kind of behavior can’t persist when information is
incomplete.
Second, observe that the bids we constructed above constitute a Nash equilibrium,

but the do not constitute the only Nash equilibrium. There are many more. All we
need to do is to make sure that each of the top three firms makes a profit on the
slot they win, and that each prefers their slot to any other slot. In the picture, just
slide the red line to the left to any position in which firm 3 prefers slot 3 to slot 2
(which just means the blue line has to be higher than the red line at v3). Similarly,
slide the green line to the left lowering p1 to any position at which the blue line is
higher than the green line at v2. These changes will generate new Nash equilibrium
with new prices for the different slots. These prices will be lower for slots 1 and 2.
A second price auction of the kind we are studying here often has the feature that

bidders will bid their ’valuations’. This won’t necessarily support on equilibrium
here as Figure 1 illustrates.

In this Figure, each bidder bids his own value, which would give prices v4 for slot
3, v3 for slot 2 and v2 for slot 1. The it is easy to see from the figure, that at these
prices, all three of the top bidders would prefer to win the third slot. The reason
is that the higher prices that are supported by the bidders values, aren’t warranted
given the marginally higher click through rates associated with the better slots. We
have no problem constructing an equilibrium for this problem, however, it won’t
support an outcome where bidders bid their true values.

Exercises.

(1) Unlike a standard auction, an equilibrium in which bidders bid their values
may not exist at all. In the following diagram, the colored dash lines are
interpreted as the are above and bids are equal to values for all players.

7



Write down the profitable deviations that are available to each player in this
(non-equilibrium) outcome.

v4 v3 v2 v1
v

V

(2) Can you give an algebraic condition (i.e., and inequality) that will ensure
that there is a Nash equilibrium for this game in which each bidder bids their
value?

(3) Find the two Nash equilibrium in which the sellers expected revenue is highest
and lowest

(4) Using the diagrammatic method, show how to compute prices for the case
where the bidder with the fourth highest value bids v3 instead of v4.

(5) Write down a constrained maximization problem that shows how google
would maximize its ad revenues from this action by setting slot prices satis-
fying (1.2). Can you suggest an algorithmic method to solve this problem?
Could you code it?

2. Consumer Search

Apart from the fact that firms bid more than a slot is truly worth to them in
the position auctions, there are a number of characteristics of this model that seem
unrealistic. First, each firm knows exactly what the values of the other firms are.
This is what allows them to confidently bid way more for a slot than it is worth to
them. Perhaps more important, the click through rates that the firms are bidding
on are unrelated to the characteristics of the firms that are actually making the
bids. Most consumers will only click on sponsored ads if they feel that these ads will
provide them useful information. Whether they do or not must surely depend on
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the characteristics they believe the bidding firms have. Secondly, there is a strong
connection between click through rates and the position of the ad on the web page.
Presumably this reflects the fact that consumers think that ads in a higher slot are
more informative. It would be nice to know exactly why this might be.

In a manner that differs a bit from the first section, we’ll assume that there is a
continuum of consumers. Consumers just want to buy a product. If they succeed in
finding the product they want, they get a payoff of 1. When buyers see an ad, they
don’t know whether or not they will find something they want to buy. Each firm has
a quality represented by the probability v with which a consumer who visits their
site will find something they want to buy (we assume they always buy if they find
something they want).
The complication for consumers is two-fold. First, it is costly for them to click on

an ad and decide whether they want to buy. The variable s will represent the cost
of doing so for some consumer. Second, consumers can’t tell the quality of a firm
by looking at it’s link alone, they actually have to pay the cost s to visit the ad and
find out.
One the other side, a firm just wants to sell its product. Assume that if it sells

it gets a payoff 1. The probability with which it sells is given by the firm’s quality
v. The expected payoff when a consumer clicks through an ad link to visit the web
page is then v. Firms don’t know consumers’ search costs.
We’ll assume that consumers believe that each firm’s quality v is independently

drawn from some distribution F which is continuously differentiable with support
on [0, 1]. Firms believe that the proportion of consumers who have search costs less
than s is given by a continuously differentiable function G with domain [0, 1].
Lets examine an example where there are 3 firms bidding on two slots, the highest

or top spot, and the lower spot. Slots are auctioned exactly as they were in section 1
- each firm submits a bid for one slot. The highest bid wins the top slot and pays the
second highest bid. The second highest bid wins the lower slot and pays the third
highest bid. The low bidder doesn’t get an advertising slot (or any clicks).
As before, the firms are interested in the click through rates x1 and x2 associated

with each of the slots. The difference is that these click through rates now represent
the proportion of all the consumers who will click through their link to visit their
web page.
We are going to find the click through rates as part of the Bayesian Nash equilib-

rium. However, conditional on the click through rates and bids, the firms’ profits are
given by (1.2) just as they were in the first section. The complication we’ll tackle in
the next subsection is that when a firm submits a bid, it can’t be sure which slot it
will win, or even if it will win a slot at all.
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This model also resolves one of the issues associated with the position auction we
discussed in the first part of this chapter, since firms won’t know exactly the values of
their competitors. This helps make bidding strategies of the firms more reasonable.

2.1. Equilibrium. We’ll use two methods that we’ve used before. First we’ll assume
that all three firms use the same bidding rule β (v) and that this rule is monotonically
increasing - the higher is the firm’s quality v, the higher the bid it will submit.
Second, we’ll use the approach in which a firm deviates by bidding as if it has a
different quality instead of thinking of a different bid. As you’ll see, this will get us
all the values we want.
If the bidding rule is increasing, then the probability that a firm with value v wins

the top slot is

F 2 (v)

which is exactly the same as in the first and second price auctions we looked at
previously. The probability that a firm with value v wins the lower slot is

2F (v) (1− F (v))

Notice that because we are using the assumption that the bidding rule is increasing,
we can say this without actually knowing what the equilibrium bidding rule β is.
With that said, consumers see the identities of the seller in each slot. We need to
condition on this information when we calculate expectations.

The expected quality of the firms in the two slots. In this calculation you
can see the name of the firm in the top slot - call it S1 (for seller 1). The firm in
the 2nd slot could be called S2, while the firm that didn’t make it could be called
S3. This happens when S1 has value ṽ, Firm S2 has value ṽ′ < ṽ,while S3 has value
ṽ′′ < ṽ′. The probability that the three sellers have exactly these three values is
f (ṽ) f (ṽ′) f (ṽ′′). The probability that we see S1 in slot 1, S2 in slot 2 and Ṡ3 with
no slot is given by summing these probabilities over all the triples of values that
satisfy the inequalities.
This is just

∫

1

0

∫ ṽ

0

∫ ṽ′

0

f (ṽ) f (ṽ′) f (ṽ′′) dṽ′′dṽ′dṽ =

∫

1

0

1

2
F 2 (ṽ) f (ṽ) dṽ =

1

6

∫

1

0

dF 3 (ṽ) =
1

6

This must be equal to 1

6
since there are six possible ways the values of the sellers

could have lined up.
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What that means is that the density of S1’s quality conditional on the event that
S1 is in the top slot and S2 is in the second slot and S3 is in the third slot is

(2.1)
1

2
F 2 (ṽ) f (ṽ)

1

6

.

Using this density, we can find the expected quality of S1 conditional on the slot
allocation to be

V1 = 6

∫

1

0

ṽ
1

2
F 2 (ṽ) f (ṽ) dṽ.

Similarly, the expected quality of S2 is

(2.2) V2 = 6

∫

1

0

ṽF (ṽ) (1− F (ṽ)) f (ṽ) dṽ.

It is completely intuitive that V2 < V1 as these are expectations of different order
statistics.
If you want a proof, notice that the distribution S2’s quality is given by

∫ v

0

F (ṽ) (1− F (ṽ)) f (ṽ) dṽ =

∫ v

0

F (ṽ) f (ṽ) dṽ −

∫ ṽ

0

F 2 (ṽ) f (ṽ) dṽ =

1

2

∫ v

0

dF 2 (ṽ)−
1

3

∫ v

0

dF 3 (ṽ) =

3

6
F 2 (v)−

2

6
F 3 (v) >

1

6
F 3 (v) .

What that says is that for every v, the probability that S2’s value is less than or
equal to v is strictly larger than the probability that S ′

1s value is less than or equal
to v. That is the definition of first order stochastic dominance - i.e., the distribution
of values for S1 first order stochastically dominates the distribution of values for S2.
One of the most basic properties of first order stochastic dominance is that if one
distribution first order stochastically dominates another, then the expectation of any
non-decreasing function with respect to the first distribution must be at least as large
as the corresponding expectation with respect to the second distribution.
Since our consumers prefer firms with higher values, it now becomes clear why they

will always click on the top link first. If consumers expect firms to bid for the top
ad using a monotonic (in their value) bidding rule, which is our running assumption,
then it is in their own interest to click on the top ad because that is where they are
most likely to find the good they want.
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Determine the click through rate. Now we can immediately address an impor-
tant question. Each consumer will click on the ad in the top position if the expected
value V1 is larger than their search cost s. Since s is distributed G, the proportion of
consumers who click on the top ad is G (V1), in other words, if we are right about the
monotonic bidding strategy, the click through rate x1 on the top ad must be G (V1).
Now the problem turns to another issue that we have already addressed. If a

consumer doesn’t click on the top ad because their search costs are too high (for
example if they just don’t have time), then these same consumers certainly won’t
click on the second ad. The only consumers who click through the link to the second
ad, are those who click on the top ad but do not succeed in finding what they want.

Computing the payoff at the second slot when you fail to trade at the

first. You might think that at this point we should repeat what we have already
done to find the proportion of consumers whose search cost is below V2 who fail to
trade with S1. This would be incorrect because consumers who fail to find what
they wanted with S1 should be more pessimistic about Ṡ2, they’ll think the expected
quality of S2 is strictly less than V2.

5

The reason is that consumers believe that the firm behind the first slot has the
highest expected quality. If they can’t find what they want at the best firm, it seems
less likely that they’ll find what they want at the second best firm.
To do this calculation, we need to figure out the expected quality of the firm behind

the second ad conditional on having failed to find something good at the first firm,
and, as before, on the order of the ads we see. We’ll first do it using conditional
probability as we did above. Then we’ll repeat the exercise using Bayes rule so you
can see the difference.
We want to find the expected quality of S2 conditional on clicking on the ad from

S1 but failing to trade (using the distribution conditional on the stores’ order). Recall
the rule for conditional probability

Pr (A|B) =
Pr (A ∩ B)

Pr (B)
.

In this expression A and B are events - that is, the are just a list of things that
happen. Here event A is just the event in which a consumer buys if he or she goes
to S2. The event B is the probability with which the consumer failed to trade when
he/she visited S1.
We can build these things up from scratch as before by trying to construct Pr (A ∩ B)

from first principles. We need to find the collection of all the profiles of values for
the three firms which are consistent with the ranking we see. For each such profile,

5Recall that the consumer doesn’t directly observe the quality of S1, he/she can only infer what
it was from the subsequent outcome.
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we can calculate the probability that the consumer will fail to trade with S1, but
then trade with S2. Then we can take the expectation of this probability given the
conditional distributions we derived above.
If S1 has value v while S2 has value ṽ, while S3 has a value below ṽ the joint

density of the pair (v, ṽ) conditional on what the consumer observes - i.e. S1 has a
higher value than S2 who has a higher value than S3 is given by

6f (v) f (ṽ)F (ṽ)

which follows from our description of the conditional probability distribution as de-
scribed above.
The probability the consumer fails to trade with v then trades with ṽ is

(1− v) ṽ

So we just have to take the expectation of this over all the pairs (v, ṽ) for which
v > ṽ:

Pr (A ∩B) = 6

∫

1

0

∫ v

0

(1− v) ṽF (ṽ) f (ṽ) dṽf (v) dv

from the calculations we did above.
Event B is the probability that the consumer fails to trade with S1. The density

of the value at the seller who wins the top position conditional on the outcomes for
each of the firms was given above by (2.1). Then we probability with which the
buyer fails to trade at the seller in the first position is

6

∫

1

0

(1− v)
1

2
F 2 (v) f (v) dv.

Now using conditional probability, the probability of trading with S2 conditional
on failing with S1 is

V ∗

2 =

∫

1

0

∫ v

0
(1− v) ṽF (ṽ) f (ṽ) dṽf (v) dv
∫

1

0
(1− v) 1

2
F 2 (v) f (v) dv.

The click through rate for the second slot is equal to the proportion of people of
all buyers who fail to trade at S1 who have costs low enough to warrant the second
click. This is

G (V ∗

2 ) = G

(

∫

1

0

∫ v

0
(1− v) ṽF (ṽ) f (ṽ) dṽf (v) dv
∫

1

0
(1− ṽ) 1

2
F 2 (ṽ) f (ṽ) dṽ.

)

.

This gives us the click through rate on the second slot as (1− V1)G (V ∗

2 ).
Again, notice that we have been able to compute a pair of click through rates

x1 = G (V1)
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and

x2 = (1− V1)G (V ∗

2 )

without having to know the actual bidding rule β that firms are using. All we need
to know so far was that this rule is increasing.

2.2. Bidding Rules. Now that we have click through rates for each of the slots, we
can use exactly the same approach as we used for the standard auctions to try to
figure out what the bidding rule is.
The payoff to the firm whose value is v and who bids as if its value were v′ is

2

∫ v′

0

∫ ṽ

0

x1 ∗ (v − β (ṽ)) f (ṽ′′) dṽ′′f (ṽ) dṽ+

2

∫

1

v′

∫ v′

0

x2 ∗ (v − β (ṽ)) f (ṽ) dṽf (ṽ′′) dṽ′′ =

(2.3) 2

∫ v′

0

x1 (v − β (ṽ))F (ṽ) f (ṽ) dṽ + 2 (1− F (v′))

∫ v′

0

(x2 (v − β (ṽ))) f (ṽ) dṽ.

Now we can find the bidding rule by using the logic that if the bidding rule β is part
of an equilibrium, then it should be optimal for each firm to bid as if their value were
equal to their true value v. The first order condition for maximization of (2.3) with
respect to v′ is:

x1 (v − β (v′))F (v′) f (v′) + (1− F (v′)) (x2 (v − β (v′))) f (v′) =

f (v′)

∫ v′

0

(x2 (v − β (ṽ))) f (ṽ) dṽ.

This condition should hold uniformly in v so that in equilibrium

(2.4) v − β (v) =

∫ v

0
(x2 (v − β (ṽ))) f (ṽ) dṽ

x1F (v) + x2 (1− F (v))

Notice something interesting about this formula. Unlike the auction with complete
information we studied first in this reading, no bidder will ever bid strictly more that v
in equilibrium. In the auction with complete information, bidders knew enough about
the values of the other bidders that they could submit bids above their valuation
without worrying that they would every have to pay more that their value. Here,
bidders have much less information, so they can’t rule out the possibility that bids
above their value will result in them paying too much.
This suggests that the term in the numerator of the expression on the right hand

side of (2.4) must be positive. Since the denominator is clearly positive, (2.4) says
that bidders will always bid strictly less than their value.
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It might seem strange to you that a second price auction leads to bids below
value. Though this is indeed a second price auction, it isn’t a Vickery mechanism

- the bidder can manipulate the price he or she pays by trying to manipulate the
probability with which it wins the second rather than the first slot.
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