
Games

The theory of games provides a description of games that fits common games like 
poker or the board game “Monopoly” but will cover many other situations as well. 
In any game, there is a list of players.  Games generally unfold over time; at each 
moment in time, players have information, possibly incomplete, about the current 
state of play, and a set of actions they can take.  Both information and actions 
may depend on the history of the game prior to that moment.  Finally, players 
have payoffs, and are assumed to play in such a way as to maximize their 
expected payoff, taking into account their expectations for the play of others. 
When the players, their information and available actions, and payoffs have been 
specified, we have a game.

Matrix Games

The simplest game is called a matrix payoff game with two players.  In a matrix 
payoff game, all actions are chosen simultaneously.  It is conventional to describe 
a matrix payoff game as played by a row player and a column player.  The row 
player chooses a row in a matrix; the column player simultaneously chooses a 
column.  The outcome of the game is a pair of payoffs where the first entry is the 
payoff of the row player and the second is the payoff of the column player.  Table
 7 -1 provides an example of a “2 ×  2” matrix payoff game, the most famous 
game of all, which is known as the prisoner’s dilemma.

Table 7-1: The Prisoner’s Dilemma

Column

R
o
w Confess Don’t

Confess (-10,-10) (0,-20)
Don’t (-20,0) (-1,-1)

In the prisoner’s dilemma, two criminals named Row and Column have been 
apprehended by the police and are being questioned separately.  They are jointly 
guilty of the crime.  Each player can choose either to confess or not.  If Row 
confesses, we are in the top row of the matrix (corresponding to the row labeled 
Confess).  Similarly, if Column confesses, the payoff will be in the relevant column. 
In this case, if only one player confesses, that player goes free and the other 
serves twenty years in jail.  (The entries correspond to the number of years lost to 
prison.  The first entry is always Row’s payoff, the second Column’s payoff.)  Thus, 
for example, if Column confesses and Row does not, the relevant payoff is the first 
column and the second row, in reverse color in Table  7 -2.



Table 7-2: Solving the Prisoner's Dilemma

Column
R

o
w Confess Don’t

Confess (-10,-10) (0,-20)
Don’t (-20,0) (-1,-1)

If Column confesses and Row does not, Row loses twenty years, and Column loses 
no years, that is, goes free.  This is the payoff (-20,0) in reverse color in Table  7
-2.  If both confess, they are both convicted and neither goes free, but they only 
serve ten years each.  Finally, if neither confesses, there is a ten percent chance 
they are convicted anyway (using evidence other than the confession), in which 
case they average a year lost each.

The prisoner’s dilemma is famous partly because it is readily solvable.  First, Row 
has a strict advantage to confessing, no matter what Column is going to do.  If 
Column confesses, Row gets -10 from confessing, -20 from not, and thus is better 
off from confessing.  Similarly, if Column doesn’t confess, Row gets 0 from 
confessing, -1 from not confessing, and is better off confessing.  Either way, no 
matter what Column does, Row should choose to confess.1  This is called a 
dominant strategy, a strategy that is optimal no matter what the other players do.

The logic is exactly similar for Column: no matter what Row does, Column should 
choose to confess.  That is, Column also has a dominant strategy, to confess.  To 
establish this, first consider what Column’s best action is, when Column thinks 
Row will confess.  Then consider Column’s best action when Column thinks Row 
won’t confess.  Either way, Column gets a higher payoff (lower number of years 
lost to prison) by confessing.

The presence of a dominant strategy makes the prisoner’s dilemma particularly 
easy to solve.  Both players should confess.  Note that this gets them ten years 
each in prison, and thus isn’t a very good outcome from their perspective, but 
there is nothing they can do about it in the context of the game, because for each, 
the alternative to serving ten years is to serve twenty years.  This outcome is 
referred to as (Confess, Confess), where the first entry is the row player’s choice, 
and the second entry is the column player’s choice.

Consider an entry game, played by Microsoft (the row player) and Piuny (the 
column player), a small start-up company.  Both Microsoft and Piuny are 
considering entering a new market for an online service.

1  If Row and Column are friends are care about each other, that should be included as part of the 
payoffs.  Here, there is no honor or friendship among thieves, and Row and Column only care 
about what they themselves will get.



  The payoff structure is

Table 7-3: An Entry Game

Piuny

M
S Enter Don’t

Enter (2,-2) (5,0)
Don’t (0,5) (0,0)

In this case, if both companies enter, Microsoft ultimately wins the market, and 
earns 2, and Piuny loses 2.  If either firm has the market to itself, they get 5 and 
the other firm gets zero.  If neither enters, both get zero.  Microsoft has a 
dominant strategy to enter: it gets 2 when Piuny enters, 5 when Piuny doesn’t, 
and in both cases does better than when Microsoft doesn’t enter.  In contrast, 
Piuny does not have a dominant strategy: Piuny wants to enter when Microsoft 
doesn’t, and vice-versa.  That is, Piuny’s optimal strategy depends on Microsoft’s 
action, or, more accurately, Piuny’s optimal strategy depends on what Piuny 
believes Microsoft will do.

Piuny can understand Microsoft’s dominant strategy, if it knows the payoffs of 
Microsoft.2  Thus, Piuny can conclude that Microsoft is going to enter, and this 
means that Piuny should not enter.  Thus, the equilibrium of the game is for MS to 
enter and Piuny not to enter.  This equilibrium is arrived at by the iterated 
elimination of dominated strategies, which sounds like jargon but is actually plain 
speaking.  First, we eliminated Microsoft’s dominated strategy in favor of its 
dominant strategy.  Microsoft had a dominant strategy to enter, which means the 
strategy of not entering is dominated by the strategy of entering, so we 
eliminated the dominated strategy.  That leaves a simplified game in which 
Microsoft enters:

Table 7-4; Eliminating a Dominated Strategy

Piuny

M
S Enter Don’t

Enter (2,-2) (5,0)

In this simplified game, after the elimination of Microsoft’s dominated strategy, 
Piuny also has a dominant strategy: not to enter.  Thus, we iterate and eliminate 
dominated strategies again, this time eliminating Piuny’s dominated strategies, 

2  It isn’t so obvious that one player will know the payoffs of another player, and that often 
causes players to try to signal that they are going to play a certain way, that is, to demonstrate 
commitment to a particular advantageous strategy.  Such topics are taken up in business 
strategy and managerial economics.



and wind up with a single outcome: Microsoft enters, and Piuny doesn’t.  The 
iterated elimination of dominated strategies solves the game.3

Here is another game, with three strategies for each player.

Table 7-5: A 3 X 3 Game

Column

R
o
w Left Center Right

Top (-5,-1) (2,2) (3,3)
Middle (1,-3) (1,2) (1,1)

Bottom (0,10) (0,0) (0,-10)

The process of iterated elimination of dominated strategies is illustrated by 
actually eliminating the rows and columns, as follows.  A reverse color (white 
writing on black background) indicates a dominated strategy.

Middle dominates bottom for Row, yielding:

Table 7-6: Eliminating a Dominated Strategy

Column

R
o
w Left Center Right

Top (-5,-1) (2,2) (3,3)
Middle (1,-3) (1,2) (1,1)

Bottom (0,10) (0,0) (0,-10)

With bottom eliminated, Left is now dominated for Column by either Center or 
Right, which eliminates the left column.

Table 7-7: Eliminating Another Dominated Strategy

Column

R
o
w Left Center Right

Top (-5,-1) (2,2) (3,3)
Middle (1,-3) (1,2) (1,1)

Bottom (0,10) (0,0) (0,-10)

With Left and Bottom eliminated, Top now dominates Middle for Row.

3  A strategy may be dominated not by any particular alternate strategy but by a randomization 
over other strategies, which is an advanced topic not considered here.



Table 7-8: Eliminating a Third Dominated Strategy

Column
R

o
w Left Center Right

Top (-5,-1) (2,2) (3,3)
Middle (1,-3) (1,2) (1,1)

Botto
m

(0,10) (0,0) (0,-10)

Finally, Column chooses Right over Center, yielding a unique outcome after the 
iterated elimination of dominated strategies, which is (Top, Right).

Table 7-9: Game Solved

Column

R
o
w Left Center Right

Top (-5,-1) (2,2) (3,3)
Middle (1,-3) (1,2) (1,1)

Bottom (0,10) (0,0) (0,-10)

The iterated elimination of dominated strategies is a useful concept, and when it 
applies, the predicted outcome is usually quite reasonable.  Certainly it has the 
property that no player has an incentive to change their behavior given the 
behavior of others.  However, there are games where it doesn’t apply, and these 
games require the machinery of a Nash equilibrium, named for Nobel laureate 
John Nash (1928 – ).

Nash Equilibrium

In a Nash equilibrium, each player chooses the strategy that maximizes their 
expected payoff, given the strategies employed by others.  For matrix payoff 
games with two players, a Nash equilibrium requires that the row chosen 
maximizes the row player’s payoff, given the column chosen by the column 
player, and the column, in turn, maximizes the column player’s payoff given the 
row selected by the row player.  Let us consider first the prisoner’s dilemma, 
which we have already seen.

Table 7-10: Prisoner's Dilemma Again

Column

R
o
w Confess Don’t

Confess (-10,-10) (0,-20)
Don’t (-20,0) (-1,-1)

Given that the row player has chosen to confess, the column player also chooses 
confession because -10 is better than -20.  Similarly, given that the column player 
chooses confession, the row player chooses confession, because -10 is better than 
-20.  Thus, for both players to confess is a Nash equilibrium.  Now let us consider 
whether any other outcome is a Nash equilibrium.  In any outcome, at least one 



player is not confessing.  But that player could get a higher payoff by confessing, 
so no other outcome could be a Nash equilibrium.

The logic of dominated strategies extends to Nash equilibrium, except possibly for 
ties.  That is, if a strategy is strictly dominated, it can’t be part of a Nash 
equilibrium.  On the other hand, if it involves a tied value, a strategy may be 
dominated but still part of a Nash equilibrium.

The Nash equilibrium is justified as a solution concept for games as follows.  First, 
if the players are playing a Nash equilibrium, no one has an incentive to change 
their play or re-think their strategy.  Thus, the Nash equilibrium has a “steady 
state” aspect in that no one wants to change their own strategy given the play of 
others.  Second, other potential outcomes don’t have that property: if an outcome 
is not a Nash equilibrium, then at least one player does have an incentive to 
change what they are doing.  Outcomes that aren’t Nash equilibria involve 
mistakes for at least one player.  Thus, sophisticated, intelligent players may be 
able to deduce each other’s play, and play a Nash equilibrium

Do people actually play Nash equilibria?  This is a controversial topic and mostly 
beyond the scope of this book, but we’ll consider two well-known games: Tic-Tac-
Toe (see, e.g. http://www.mcafee.cc/Bin/tictactoe/index.html) and Chess.  Tic-Tac-
Toe is a relatively simple game, and the equilibrium is a tie.  This equilibrium 
arises because each player has a strategy that prevents the other player from 
winning, so the outcome is a tie.  Young children play Tic-Tac-Toe and eventually 
learn how to play equilibrium strategies, at which point the game ceases to be 
very interesting since it just repeats the same outcome.  In contrast, it is known 
that Chess has an equilibrium, but no one knows what it is.  Thus, at this point we 
don’t know if the first mover (White) always wins, or the second mover (Black) 
always wins, or if the outcome is a draw (neither is able to win).  Chess is 
complicated because a strategy must specify what actions to take given the 
history of actions, and there are a very large number of potential histories of the 
game thirty or forty moves after the start.  So we can be quite confident that 
people are not (yet) playing Nash equilibria to the game of Chess.  

The second most famous game in game theory is the battle of the sexes.  The 
battle of the sexes involves a married couple who are going to meet each other 
after work, but haven’t decided where they are meeting.  Their options are a 
baseball game or the ballet.  Both prefer to be with each other, but the man 
prefers the baseball game and the woman prefers the ballet.  This gives payoffs 
something like this:

Table 7-11: The Battle of the Sexes

Woman

M
a
n Baseball Ballet

Baseball (3,2) (1,1)
Ballet (0,0) (2,3)



The man would rather that they both go to the baseball game, and the woman 
that they both go to the ballet.  They each get 2 payoff points for being with each 
other, and an additional point for being at their preferred entertainment.  In this 
game, iterated elimination of dominated strategies eliminates nothing.  You can 
readily verify that there are two Nash equilibria: one in which they both go to the 
baseball game, and one in which they both go to ballet.  The logic is: if the man is 
going to the baseball game, the woman prefers the 2 points she gets at the 
baseball game to the single point she would get at the ballet.  Similarly, if the 
woman is going to the baseball game, the man gets three points going there, 
versus zero at the ballet.  Thus, for both to go to the baseball game is a Nash 
equilibrium.  It is straightforward to show that for both to go to the ballet is also a 
Nash equilibrium, and finally that neither of the other two possibilities, involving 
not going to the same place, is an equilibrium.

Now consider the game of matching pennies.  In this game, both the row player 
and the column player choose heads or tails, and if they match, the row player 
gets the coins, while if they don’t match, the column player gets the coins.  The 
payoffs are provided in the next table.

Table 7-12: Matching Pennies

Column

R
o
w Heads Tails

Heads (1,-1) (-1,1)
Tails (-1,1) (1,-1)

You can readily verify that none of the four possibilities represents a Nash 
equilibrium.  Any of the four involves one player getting -1; that player can 
convert -1 to 1 by changing his or her strategy.  Thus, whatever the hypothesized 
equilibrium, one player can do strictly better, contradicting the hypothesis of a 
Nash equilibrium.  In this game, as every child who plays it knows, it pays to be 
unpredictable, and consequently players need to randomize.  Random strategies 
are known as mixed strategies, because the players mix across various actions.

Mixed Strategies

Let us consider the matching pennies game again.

Table 7-13: Matching Pennies Again

Column

R
o
w Heads Tails

Heads (1,-1) (-1,1)
Tails (-1,1) (1,-1)

Suppose that Row believes Column plays Heads with probability p.  Then if Row 
plays Heads, Row gets 1 with probability p and -1 with probability (1-p), for an 
expected value of 2p – 1.  Similarly, if Row plays Tails, Row gets -1 with probability 



p (when Column plays Heads), and 1 with probability (1-p), for an expected value 
of 1 – 2p.  This is summarized in the next table.

Table 7-14: Mixed Strategy in Matching Pennies

Column

R
o
w Heads Tails

Heads (1,-1) (-1,1) 1p + -1(1-p)=2p-1
Tails (-1,1) (1,-1) -1p + 1(1-p)=1-2p

If 2p – 1 > 1 – 2p, then Row is better off on average playing Heads than Tails. 
Similarly, if 2p – 1 < 1 – 2p, Row is better off playing Tails than Heads.  If, on the 
other hand, 2p – 1 = 1 – 2p, then Row gets the same payoff no matter what Row 
does.  In this case Row could play Heads, could play Tails, or could flip a coin and 
randomize Row’s play.

A mixed strategy Nash equilibrium involves at least one player playing a 
randomized strategy, and no player being able to increase their expected payoff 
by playing an alternate strategy.  A Nash equilibrium without randomization is 
called a pure strategy Nash equilibrium.

Note that that randomization requires equality of expected payoffs.  If a player is 
supposed to randomize over strategy A or strategy B, then both of these 
strategies must produce the same expected payoff.  Otherwise, the player would 
prefer one of them, and wouldn’t play the other.

Computing a mixed strategy has one element that often appears confusing. 
Suppose Row is going to randomize.  Then Row’s payoffs must be equal, for all 
strategies Row plays with positive probability.  But that equality in Row’s payoffs 
doesn’t determine the probabilities with which Row plays the various rows. 
Instead, that equality in Row’s payoffs will determine the probabilities with which 
Column plays the various columns.  The reason is that it is Column’s probabilities 
that determine the expected payoff for Row; if Row is going to randomize, then 
Column’s probabilities must be such that Row is willing to randomize.

Thus, for example, we computed the payoff to Row of playing Heads, which was 
2p – 1, where p was the probability Column played Heads.  Similarly, the payoff to 
Row of playing Tails was 1 – 2p.  Row is willing to randomize if these are equal, 
which solves for p = ½ .

Let q be the probability that Row plays Heads.  Show that Column is willing to 
randomize if, and only if, q = ½ .  (Hint: First compute Column’s expected 
payoff when Column plays Heads, and then Column’s expected payoff 
when Column plays Tails.  These must be equal for Column to randomize.)

Now let’s try a somewhat more challenging example, and revisit the battle of the 
sexes.



Table 7-15: Mixed Strategy in Battle of the Sexes

Woman
M

a
n Baseball Ballet

Baseball (3,2) (1,1)
Ballet (0,0) (2,3)

This game has two pure strategy Nash equilibria: (Baseball,Baseball) and 
(Ballet,Ballet).  Is there a mixed strategy?  To compute a mixed strategy, let the 
Woman go to the baseball game with probability p, and the Man go to the baseball 
game with probability q.  Table  7 -16 contains the computation of the mixed 
strategy payoffs for each player.

Table 7-16: Full Computation of the Mixed Strategy

Woman

M
a
n

Baseball (p) Ballet (1-p) Man’s E Payoff
Baseball
 (prob q)

(3,2) (1,1) 3p + 1(1-p)=1+2p

Ballet 
(prob 1-q)

(0,0) (2,3) 0p + 2(1-p)=2-2p

Woman’s 
E Payoff

2q + 0(1-q)=2q 1q + 3(1-q)=3-2q

For example, if the Man (row player) goes to the baseball game, he gets 3 when 
the Woman goes to the baseball game (probability p) and otherwise gets 1, for an 
expected payoff of 3p + 1(1-p) = 1 + 2p.  The other calculations are similar but 
you should definitely run through the logic and verify each calculation.

A mixed strategy in the Battle of the Sexes game requires both parties to 
randomize (since a pure strategy by either party prevents randomization by the 
other).  The Man’s indifference between going to the baseball game and the ballet 
requires 1+2p = 2 – 2p, which yields p = ¼ .  That is, the Man will be willing to 
randomize which event he attends if the Woman is going to the ballet ¾ of the 
time, and otherwise to the baseball game.  This makes the Man indifferent 
between the two events, because he prefers to be with the Woman, but he also 
likes to be at the baseball game; to make up for the advantage that the game 
holds for him, the woman has to be at the ballet more often.

Similarly, in order for the Woman to randomize, the Woman must get equal 
payoffs from going to the game and going to the ballet, which requires 2q = 3 – 
2q, or q = ¾ .  Thus, the probability that the Man goes to the game is ¾, and he 
goes to the ballet ¼ of the time.  These are independent probabilities, so to get 
the probability that both go to the game, we multiply the probabilities, which 

yields 16
3 .  The next table fills in the probabilities for all four possible outcomes.



Table 7-17: Mixed Strategy Probabilities

Woman
M

a
n Baseball Ballet

Baseball
16

3
16

9

Ballet
16

1
16

3

Note that more than half the time, (Baseball, Ballet) is the outcome of the mixed 
strategy, and the two people are not together.  This lack of coordination is a 
feature of mixed strategy equilibria generally.  The expected payoffs for both 
players are readily computed as well.  The Man’s payoff was 1+2p = 2 – 2p, and 
since p = ¼, the Man obtained 1 ½.  A similar calculation shows the Woman’s 
payoff is the same.  Thus, both do worse than coordinating on their less preferred 
outcome.  But this mixed strategy Nash equilibrium, undesirable as it may seem, 
is a Nash equilibrium in the sense that neither party can improve their payoff, 
given the behavior of the other party.

In the Battle of the sexes, the mixed strategy Nash equilibrium may seem unlikely, 
and we might expect the couple to coordinate more effectively.  Indeed, a simple 
call on the telephone should rule out the mixed strategy.  So let’s consider 
another game related to the Battle of the Sexes, where a failure of coordination 
makes more sense.  This is the game of “Chicken.”  Chicken is played by two 
drivers driving toward each other, trying to convince the other to yield, which 
involves swerving into a ditch.  If both swerve into the ditch, we’ll call the 
outcome a draw and both get zero.  If one swerves and the other doesn’t, the 
swerver loses and the other wins, and we’ll give the winner one point.4  The only 
remaining question is what happens when both don’t yield, in which case a crash 
results.  In this version, that has been set at four times the loss of swerving, but 
you can change the game and see what happens.

Table 7-18: Chicken

Column

R
o
w Swerve Don’t

Swerve (0,0) (-1,1)
Don’t (1,-1) (-4,-4)

This game has two pure strategy equilibria: (Swerve, Don’t) and (Don’t, Swerve). 
In addition, it has a mixed strategy.  Suppose Column swerves with probability p. 
Then Row gets 0p + -1(1-p) from swerving, 1p + (-4)(1-p) from not swerving, and 
Row will randomize if these are equal, which requires p = ¾.  That is, the 
probability that Column swerves, in a mixed strategy equilibrium is ¾.  You can 

4  Note that adding a constant to a player’s payoffs, or multiplying that player’s payoffs by a 
positive constant, doesn’t affect the Nash equilibria, pure or mixed.  Therefore, we can always 
let one outcome for each player be zero, and another outcome be one.



verify that the Row player has the same probability by setting the probability that 
Row swerves equal to q and computing Column’s expected payoffs.  Thus, the 

probability of a collision is 16
1  in the mixed strategy equilibrium.

The mixed strategy equilibrium is more likely in some sense in this game; if the 
players already knew which player would yield, they wouldn’t actually need to 
play the game.  The whole point of the game is to find out who will yield, which 
means it isn’t known in advance, which means the mixed strategy equilibrium is 
in some sense the more reasonable equilibrium.

Paper, Scissors, Rock is a child’s game in which two children simultaneously 
choose paper (hand held flat), scissors (hand with two fingers protruding to look 
like scissors) or rock (hand in a fist).  The nature of the payoffs is that paper beats 
rock, rock beats scissors, and scissors beat paper.  This game has the structure

Table 7-19: Paper, Scissors, Rock

Column

R
o
w Paper Scissors Rock

Paper (0,0) (-1,1) (1,-1)
Scissors (1,-1) (0,0) (-1,1)

Rock (-1,1) (1,-1) (0,0)

Show that, in the Paper, Scissors, Rock game, there are no pure strategy 
equilibria.  Show that playing all three actions with equal likelihood is a 
mixed strategy equilibrium.

Find all equilibria of the following games:

1 Column

R
o
w Left Right

Up (3,2) (11,1)
Down (4,5) (8,0)

2 Column

R
o
w Left Right

Up (3,3) (0,0)
Down (4,5) (8,0)



3 Column

R
o
w Left Right

Up (0,3) (3,0)
Down (4,0) (0,4)

4 Column

R
o
w Left Right

Up (7,2) (0,9)
Down (8,7) (8,8)

5 Column

R
o
w Left Right

Up (1,1) (2,4)
Down (4,1) (3,2)

6 Column

R
o
w Left Right

Up (4,2) (2,3)
Down (3,8) (1,5)

Examples

Our first example concerns public goods.  In this game, each player can either 
contribute, or not.  For example, two roommates can either clean their apartment, 
or not.  If they both clean, the apartment is nice.  If one cleans, that roommate 
does all the work and the other gets half of the benefits.  Finally, if neither clean, 
neither is very happy.  This suggests payoffs like:

Table 7-20: Cleaning the Apartment

Column

R
o
w Clean Don’t

Clean (10,10) (0,15)
Don’t (15,0) (2,2)

You can verify that this game is similar to the prisoner’s dilemma, in that the only 
Nash equilibrium is the pure strategy in which neither player cleans.  This is a 
game theoretic version of the tragedy of the commons – even though the 
roommates would both be better off if both cleaned, neither do.  As a practical 
matter, roommates do solve this problem, using strategies that we will investigate 
when we consider dynamic games.



Table 7-21: Driving on the Right

Column

R
o
w Left Right

Left (1,1) (0,0)
Right (0,0) (1,1)

The important thing about the side of the road the cars drive on is not that it is 
the right side but that it is the same side.  This is captured in the Driving on the 
Right game above.  If both players drive on the same side, then they both get one 
point, otherwise they get zero.  You can readily verify that there are two pure 
strategy equilibria, (Left,Left) and (Right,Right), and a mixed strategy equilibrium 
with equal probabilities.  Is the mixed strategy reasonable?  With automobiles, 
there is little randomization.  On the other hand, people walking down hallways 
often seem to randomize whether they pass on the left or the right, and 
sometimes do that little dance where they try to get past each other, one going 
left and the other going right, then both simultaneously reversing, unable to get 
out of each other’s way.  That dance suggests that the mixed strategy equilibrium 
is not as unreasonable as it seems in the automobile application.5

Table 7-22: Bank Location Game

NYC

L
A No 

Concession
Tax Rebate

No 
Concession

(30,10) (10,20)

Tax Rebate (20,10) (20,0)

Consider a foreign bank that is looking to open a main office and a smaller office 
in the United States.  The bank narrows its choice for main office to either New 
York (NYC) or Los Angeles (LA), and is leaning toward Los Angeles.  If neither city 
does anything, LA will get $30 million in tax revenue and New York ten million. 
New York, however, could offer a $10 million rebate, which would swing the main 
office to New York, but now New York would only get a net of $20 M.  The 
discussions are carried on privately with the bank.  LA could also offer the 
5  Continental Europe drove on the left until about the time of the French revolution.  At that time, 

some individuals began driving on the right as a challenge to royalty who were on the left, 
essentially playing the game of chicken with the ruling class.  Driving on the right became a 
symbol of disrespect for royalty.  The challengers won out, forcing a shift to driving on the right. 
Besides which side one drives on, another coordination game involves whether one stops or 
goes on red.  In some locales, the tendency for a few extra cars to go as a light changes from 
green to yellow to red forces those whose light changes to green to wait, and such a 
progression can lead to the opposite equilibrium, where one goes on red and stops on green. 
Under Mao Tse-tung, the Chinese considered changing the equilibrium to going on red and 
stopping on green (because ‘red is the color of progress’) but wiser heads prevailed and the 
plan was scrapped.



concession, which would bring the bank back to LA.

Verify that the bank location game has no pure strategy equilibria, and that there 
is a mixed strategy equilibrium where each city offers a rebate with 
probability ½.

Table 7-23: Political Mudslinging

Republican

D
e
m Clean Mud

Clean (3,1) (1,2)
Mud (2,1) (2,0)

On the night before the election, a Democrat is leading the Wisconsin senatorial 
race.  Absent any new developments, the Democrat will win, and the Republican 
will lose.  This is worth 3 to the Democrat, and the Republican, who loses 
honorably, values this outcome at one.  The Republican could decide to run a 
series of negative advertisements (“throwing mud”) against the Democrat, and if 
so, the Republican wins although loses his honor, which he values at 1, and so 
only gets 2.  If the Democrat runs negative ads, again the Democrat wins, but 
loses his honor, so only gets 2.  These outcomes are represented in the 
Mudslinging game above.

Show that the only Nash equilibrium is a mixed strategy with equal probabilities of 
throwing mud and not throwing mud.

Suppose that voters partially forgive a candidate for throwing mud when the rival 
throws mud, so that the (Mud, Mud) outcome has payoff (2.5,.5).  How 
does the equilibrium change?

You have probably had the experience of trying to avoid encountering someone, 
who we will call Rocky.  In this instance, Rocky is actually trying to find you.  The 
situation is that it is Saturday night and you are choosing which party, of two 
possible parties, to attend.  You like party 1 better, and if Rocky goes to the other 
party, you get 20.  If Rocky attends party 1, you are going to be uncomfortable 
and get 5.  Similarly, Party 2 is worth 15, unless Rocky attends, in which case it is 
worth 0.  Rocky likes Party 2 better (these different preferences may be part of the 
reason you are avoiding him) but he is trying to see you.  So he values Party 2 at 
10, party 1 at 5 and your presence at the party he attends is worth 10.  These 
values are reflected in the following table.



Table 7-24: Avoiding Rocky

Rocky

Yo
u Party 1 Party 2

Party 1 (5,15) (20,10)
Party 2 (15,5) (0,20)

(i) Show there are no pure strategy Nash equilibria in this game.  (ii) Find the 
mixed strategy Nash equilibria.  (iii) Show that the probability you 

encounter Rocky is 12
7 .

Our final example involves two firms competing for customers.  These firms can 
either price high or low. The most money is made if they both price high, but if 
one prices low, it can take most of the business away from the rival.  If they both 
price low, they make modest profits.  This description is reflected in the following 
table:

Table 7-25: Price Cutting Game

Firm 2

Fi
rm

 1 High Low
High (15,15) (0,25)
Low (25,0) (5,5)

Show that the firms have a dominant strategy to price low, so that the only Nash 
equilibrium is (Low, Low).
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