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This reading will describe a model that is used extensively in macroe-
conomics to understand labor markets. The model is a part of a larger
literature on search and matching. I’ll explain the model in its simplest form
here. Richer variants of the model can be used to understand wage distri-
butions and unemployment duration. The model has also been used to do
econometric evaluation of labor markets.

1 Bertrand Equilibrium

The model of directed search emerged as a response to something called
Bertrand Equilibrium - a model designed to understand price competition.
So I’ll describe it first. In the Bertrand model, there are two firms. They have
constant production costs, say c1 for firm 1 and c2 < c1for firm 2. There is a
consumer who has some utility function u (q, P ) describing her payoff when
she buys q units in total and pays price P for them. We want to assume u

is increasing in q and decreasing in P . We’ll assume that u (Q (p) , pQ (p)) ≥
u (q, pq) for all q. In other words, the consumer’s demand curve is Q (p). Of
course, the consumer can allocate her purchases between the two firms in
any way that she wants - lets just use q1 to be the amount she buys from
firm 1 and q2 as the amount she buys from firm 2.

As we will use this below, let p∗
i
be the monopoly price for firm i, i.e, it

is the price that maximizes pQ (p)− ciQ (p)
To describe the game we need to describe the strategies of each of the

three players and the payoffs that are associated with each set of strategies.
For strategies, firms just set prices. The consumer must choose how much to
buy from each firm for each pair of prices that the firms choose. Payoffs for
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firm 1
π1 (p1, p2, q1 (·) , q2 (·)) = p1q1 (p1, p2)− c1q1 (p1, p2)

and for firm 2

π2 (p1, p2, q1 (·) , q2 (·)) = p2q2 (p1, p2)− c2q2 (p1, p2) .

For the consumer payoffs are U (q1 + q2, p1q1 + p2q2).
Lets use subgame perfect Nash equilibrium as our solution concept. Then

we can use backward induction to figure out what everyone will do. Even
using backward induction, to describe an equilibrium what we need to do is
to specify the strategies that each of the players are using. For firms this is
easy, just prices. For consumers it is more complicated.

We have to write down what the consumer is expected to do in response
to any pair of prices she faces. Recall that the reason we have to do this
is because the firms calculated their best price offer by considering what
they would get by deviating to other offers. Subgame perfection requires
the firms to believe that when they deviate, the consumer will respond in a
sensible way. What that means in this context is that firms should believe
that consumers will respond by buying only at the lowest price. When firms
offer the same price, it doesn’t matter which firm the consumer buys from.
Nevertheless, to specify a strategy we have to specify exactly what consumers
will do when prices are equal. We write this down formally as follows:

q1 (p1, p2) =

{

Q (p1) p1 < p2

0 otherwise.
(1)

For firm 2, the corresponding strategy is

q2 (p1, p2) =

{

Q (p2) p2 ≤ p1

0 otherwise.
(2)

This relatively simple pair of expressions hides a very important restric-
tion. The strategy specified above has the property that the consumer will
buy everything from firm 2 as long as firm 2’s price is less than or equal

to firm 1’s price. There are a continuum of other strategies we could have
used, all of which would have specified different actions when the firms set
the same price. Later you will see why the strategy specified above is the
only one that supports a subgame perfect equilibrium.
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Given the strategy specified above for consumers, we now want the firms
to choose prices that are best replies. Start with firm 1 and suppose he is
facing a price for firm 2 equal to p2. There are two easy cases. If p2 > p∗1,
then it should be apparent that firm 1 will want to respond by setting price
equal to p∗1. This has to be better than setting any price at or above firm
2’s price, since 1 either won’t get any demand at such a price, or will sell
some amount that earns him less profit than he could get by charging what
he would as a monopolist. Alternatively, if firm 2 has a price below c1, then
firm 1 can set any price that is no smaller than firm 2’s price. This will
ensure that he doesn’t have to sell output at a price less than his marginal
cost because of the way we specified the consumer’s strategy in (1) and (2)
above.

The funny stuff starts when firm 2 charges a price that is between p∗1 and
c1. If that is the case, then firm 1 can sell some quantity at prices above his
marginal cost and make a profit. In that case he won’t want to set a price at
or above p2, for then he will get nothing. He needs to set a price below p2 in
order to make profitable sales. Since p2 is below his monopoly price, he also
wants to set his price as close to p1 as possible. No matter what price below
p2 he sets, he can always get the price a little closer. In other words, firm 1
doesn’t have a best reply.

This may seem a little confusing. Yet it is actually somewhat helpful. It
means that we are never going to be able to find a subgame perfect equi-
librium where firm 2 sets a price above c1. Why? Well, a subgame perfect
equilibrium is a Nash equilibrium, so both firms need to set prices that are
best replies. Since we can never find a best reply for firm 1, we can rule out
such an outcome.

Once firm 2’s price falls to c1, firm 1 has a lot of best replies - any price
at or above firm 2’s price will ensure that 1 doesn’t make any sales. This is
true even if firm 1 matches firm 2’s price because of the way we specified the
consumer’s strategy in (1) and (2).

The outcome that is usually referred to as ’the’ equilibrium in the Bertrand
game is the one where both firms set the price and the consumer uses the
strategy described by (1) and (2) above.

To understand why this is a Nash equilibrium you need to check unilateral
deviations. First of all, you already know that the consumer’s strategy is a
best reply to the prices set by firms, because this strategy has the consumer
doing her best no matter what the firms do. Firm 2 sets the price c1 and
sells Q (c1) units at a price which is strictly above his marginal cost. So he
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makes a profit. If he raises price, he loses all his profitable sales. So raising
price is not a profitable deviation. If he lowers price he sells a bit more at a
lower price. Since c1 must also be below firm 2’s monopoly price, this isn’t
profitable.

Firm 1 sells nothing in this equilibrium. If he raises price, he still sells
nothing. If he lowers price, he will make sales, but at a price that is below
his marginal cost. So firm 1 has no profitable deviation.

There are a bunch of other equilibrium outcomes like this one. Can
you see why the same arguments can be used to support subgame perfect
equilibrium with both firms charging any price between c1 and c2? Given
the way we have specified the consumer’s strategy, we can support any such
price by having firm1 match firm 2’s price. This keeps firm 2 from wanting
to raise its price. Firm 1 is happy with this because he doesn’t make any
sales in equilibrium.

1.1 Problems to Think About

1. We could change the strategy that the consumer is using in a subgame
perfect equilibrium by having her buy half of her demand from each
firm when the two firms set the same price. Can you explain why it
is impossible to construct a Subgame perfect equilibrium in which the
consumer uses this strategy?

2 Directed Search

Though Bertrand equilibrium is useful in explaining how subgame perfection
works in games where players have a continuum of strategies, it describes an
equilibrium that just doesn’t seem plausible. For example, both firms set the
same price even though they have different costs. For most products there
is a lot of price variability between firms that doesn’t seem to be related
to difference in product quality (Apple computers versus everything else for
example - or Microsoft Office versus OpenOffice).

Directed search is one of the models that has been proposed to deal
with this. It has some very useful characteristics, especially when applied to
labor markets, where it can be used to explain unemployment. The search
decisions that workers make in a directed search model lead to unemployment
and unfilled vacancies even though workers can see all the firms’ wages when
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they make their search decisions. The reason it is called directed search is
that workers decisions about where to apply are guided or directed by wages.
This distinguishes the model from a much bigger literature that assumes that
workers and firms are matched randomly (by chance).

To see how it works, suppose that as in the story above, there are two
firms. Instead of setting prices, though, they set wages. Each of the firms
want to fill exactly one vacancy. Instead of a single consumer, we’ll assume
there are two workers who try to find jobs with these two firms. The way
directed search approaches this is to assume that each of the workers makes
an application to one and only one of the firms. Each of the firms then
collects its applications and hires one of the workers who applied. If two
workers apply to the same firm, the firm chooses one of them randomly and
offers her the job. If only one worker applies, the firm just offers the job to
that worker.

To keep the story simple, we will assume that firms who get no applica-
tions are just out of luck, as are workers who apply but aren’t offered a job.
Otherwise, we’ll assume that firm 1 earns gross profit y1 if it fills its vacancy,
while firm 2 earns y2 < y1. Workers’ payoffs are just the wages they earn.

What gives the directed search model nice properties is the assumption
that workers use a symmetric application strategy. What that means is that
each of the workers applies to firm 1 with the same probability π. This is
something you are familiar with - a mixed strategy equilibrium. The extra
part here is that firms will have to figure out how changes in their wages are
going to affect the mixed strategy equilibrium for the workers’ application
game. Since workers’ mixed strategies are going to mean that some worker
don’t get jobs, there is going to be some unemployment and some unfilled
vacancies. Firms can limit the probability with which they have unfilled
vacancies by raising wages, since that will increase the probability with which
workers apply. We’ll work out the wages that firms offer in a subgame perfect
equilibrium. The outcome won’t look anything like the equilibrium of the
Bertrand pricing game that we studied above.

Lets do backward induction and try to figure out what the workers will do
for every pair of offers by the firms. Call the wages of the two firms w1 and
w2 for firm 1 and 2 respectively. Strictly speaking, we should model what
the firms do once they receive applications, but will skip that for brevity and
just assume as above that the firms mechanically select each worker with
probability 1

2
when it has two applications.

The normal form of the application game played among the workers now
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looks like the following:

Firm 1 Firm 2

Firm 1 w1

2
,w1

2
w1, w2

Firm 2 w2, w1
w2

2
,w2

2

To understand the payoffs, just observe that if both workers apply to the
same firm, they each get the job with probability 1

2
. That makes an expected

payoff equal to w1

2
for both of them when they both apply to firm 1.

If the other worker is applying to firm 1 with probability π, then the
expected payoff to the worker if he applies there is

π
w1

2
+ (1− π)w1.

The explanation is that if the other worker also applies to firm 1, then there
is half a chance that the worker will be hired. If the other worker applies to
firm 2, then the worker is hired for sure.

Using the same reasoning to compute the expected payoff associated with
an application to firm 2, the probability with which the worker expects the
other worker to apply to firm 1 had better satisfy

π
w1

2
+ (1− π)w1 = πw2 + (1− π)

w2

2
(3)

or

π =
2w1 − w2

w1 + w2

.

Now you should recognize that in order to describe a subgame perfect
equilibrium, you need to specify how workers will react to all pairs of wages,
not just to those you think are important. In the expression above some
weird stuff can happen when wages get too far apart. First, if w2 > 2w1, the
solution to the equation above is negative, so something is wrong. In this
case, think “one of the actions has become dominated”. If you look back at
the payoff matrix you can see which one - w2 is so high that the worker would
rather go to firm 2 than firm 1 even if he were sure that the other worker
were going to apply to firm 2.

Another way to look at it is that in order to satisfy (3) it isn’t enough
just to maximize the probability with which the other worker applies at the
same firm, you have to go even further and change the weight assigned to
the good outcome so that the payoff turns negative.
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Exactly the same thing occurs when w1 > 2w2 (so that the solution to
(3) is greater than 1). Then applying at firm 2 is a dominated strategy.

What this algebra tells us is that the only symmetric subgame perfect
equilibrium strategy looks like this:

π (w1, w2) =











2w1−w2

w1+w2

w1

2
≤ w2 ≤ 2w1

1 w2 <
w1

2

0 otherwise.

(4)

This last formula says that firm 1 should expect that varying its wage
will change the probability with a worker applies in the Nash equilibrium of
the workers’ application game. How exactly? Well, you can read this from
the formula - using the quotient rule

dπ (w1, w2)

dw1

=

d

dw1

2w1 − w2

w1 + w2

=
(w1 + w2) 2− (2w1 − w2)

(w1 + w2)
2 =

3w2

(w1 + w2)
2 > 0 (5)

provided w1

2
≤ w2 ≤ 2w1. Otherwise this derivative is zero.

If you write down what firm 1’s expected profit is you get
(

1− (1− π)2
)

(y1 − w1) .

The logic is that firm 1 is going to fill its vacancy provided at least one of
the workers applies. The probability that neither of them applies is (1− π)2

- which gives the formula.
At this stage, lets make a guess about what equilibrium is going to look

like. First, notice that there is no point for firm 1 to offer a wage more than
twice w2 or less than half w2. In the first case, he would get applications from
both workers for sure, and would still get these applications if he cut his wage
a bit. In the latter case, he wouldn’t get any applications at all, so he wouldn’t
make any profit. This means that in any subgame perfect equilibrium, the
wages of the firms are going to be close enough together that the application
probability will be determined by the solution to (3). Given this, it isn’t too
hard to see how firm 1 would choose its wage? Maximize the firm’s profit by
choosing the wage that makes the derivative of this profit function 0. That
is, find w1 by solving the equation

2 (y1 − w1)
dπ

dw1

(1− π) =
(

1− (1− π)2
)

(6)
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where π is given by (4) and dπ

dw1

is given by (5). The solution to this equation
gives the best reply function for firm 1.

At this point, even the computer algebra programs are going to fail to
find solutions for you, though you could try for numerical solutions. The
literature on directed search has handled this by developing models with a
continuum of workers and firms and using these to approximate large labor
markets. Instead of studying those, lets just look at a special case that is
analytically tractable (though a little too special to be of much practical use).
If the profits the firms make are the same (lets say y1 = y2 = y=1), then it
seems plausible that both firms would set the same wage in a subgame perfect
equilibrium. If they did, the probability with which each worker would apply
to them would be 1

2
. Here is a way to find it.

First you could write out the derivative of the profit function that applies
when firms choose wages w1and w2 (I used a computer algebra program to
find this)

−2 (w1 − 1)

(

2w1 − w2

w1 + w2

− 1

)(

2w1 − w2

(w1 + w2)
2 −

2

w1 + w2

)

+

(

2w1 − w2

w1 + w2

− 1

)2

−1

Now what we do is to set this derivative to 0 and solve for w1. Again
using computer algebra, this solution is

w1 =
w2

2 + 4w2

5w2 + 2
(7)

I’ll remark again, that the reason this is so simple is because I have assumed
y1 = y2 = 1.

Finally, we want to find the full Nash equilibrium for this game. In other
words, we want each of the two firms to set a wage that is a best reply to
the other firm’s wage. The two firms have exactly the same payoff function
in this example, which means that both of them should want to set the same
wage in equilibrium. Since the best replies are described by equation (7),
you should see that we need to find a wage w∗ for both of them to use that
is a best reply to itself, or

w∗ =
w∗ (w∗ + 4))

5w∗ + 2

which has solution 1
2
.
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The equilibrium in which the firms are identical and set the same wage
isn’t completely satisfactory. It hides one of the main predictions of directed
search, i.e., it is harder to get a job at a higher wage. Of course, everyone
knows that it is harder to get a job at a high wage firm. The advantage
of the model is that you now have a precise explanation of what ’harder to
get a job’ means. This makes it possible to turn our intuition into formal
predictions that we can check by looking at data.

Problems:

1. In the example above, 1
2
is a Nash equilibrium. Is there another one?

We didn’t actually check second order conditions in this exercize. Do
both or either of the potential candiates for equilibrium satisfy the
second order condition?

2. Find the application probability π to be used by both workers that
maximizes the expected number of matches (which is the same as the
expected level of employment). Do you see any connection with the
Price of Anarchy theorem?

3. Find the application probability π to be used by both workers that
maximizes expected revenues of firms.

4. Assuming that all firms offer the same wage, write out the Nash equi-
librium application probabilities for workers when there are three firms
and two workers.

3 Directed Search with incomplete informa-

tion.

When two workers apply to the same firm in the story above, one of them
is chosen randomly and given the job. The unlucky worker presumably goes
back to the market and tries again with another firm. This has a couple of
implications that don’t seem very plausible. First, the wage that a worker
receives doesn’t say much about the worker. If there were a distribution of
wages available, then the workers who get jobs at the high wage firms are just
lucky. As a result, their wages shouldn’t be correlated at they move between
jobs. Second, since workers just repeat their application behavior in each
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period that they are unemployed, the probability that they will get a job
in any period shouldn’t depend on the length of time they are unemployed.
Neither of these predictions is right.

To deal with this an alternative model assumes that workers have different
types that the firm can see when they apply and the firm interviews them.
When two workers apply at the same firm, the firm just hires the best one.1

A lottery is used to pick a worker only when they have the same type. What
makes the model run is that workers don’t know how good or bad their
competitors are.

To see how this one works, let the types be h and l. Suppose that the
types of the two workers are independently drawn, and that each worker is
believed to have type h with probability λ. The payoff matrix faced by a
worker then depends on his or her type. The matrix for a type h worker
looks like this

Firm 1 Firm 2

Firm 1 λw1

2
+ (1− λ)w1 w1

Firm 2 w2 λw2

2
+ (1− λ)w2

For a low type worker the matrix looks different:

Firm 1 Firm 2

Firm 1 (1− λ) w1

2
w1

Firm 2 w2 (1− λ)w2

2

A reasonable conjecture would seem to be that the high type worker
would surely go to the high wage firm (assume w1 > w2 in what follows).
Whether this conjecture is reasonable or not depends on what the other high
type worker is supposed to do, and how likely it is that the other worker is
high type. If the other worker is expected to apply to the high type firm for
sure, then the payoff to applying to the high type firm is

λ
w1

2
+ (1− λ)w1.

By applying to the low type firm, the worker would then get the job for sure,
and earn w2. So the high type worker can be expected to apply for sure to
the high type firm provided

λ
w1

2
+ (1− λ)w1 > w2.

1This is the two type version of the model in [?].
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This is bound to be true if λ (the probability the other worker is a high type)
is low enough. So lets just assume this inequality holds in what follows.

What may not be so obvious is that the low type worker will also apply
to the high wage firm if the probability the other worker has the high type
isn’t too large.

To see why, observe that the payoff to the low type worker from applying
to the high wage firm is

(1− λ)
(π

2
+ (1− π)

)

w1 (8)

where π is the probability that the other worker applies to the high wage firm
when he or she has a low type. The payoff from applying to the low wage
firm (assuming again that the high type of the other worker applies only at
the high wage) is

w2

(

λ+ (1− λ)

(

(1− π)

2
+ π

))

. (9)

If the other worker doesn’t apply to the high wage firm at all when he

has a low type, then the payoffs are just (1− λ)w1 and
(

λ+ (1−λ)
2

)

w2. If

λ < 2w1−w2

2w1+w2

then the low type worker will prefer to take his chances with the
high wage firm unless the low type of the other worker also applies with some
probability.

As before, we can find a fixed point by setting (8) equal to (9) and solving
for π. The solution is

π∗ =
λ (w2 + 2w1)− (2w1 − w2)

− (1− λ) (w2 + w1)
. (10)

Notice that the condition that ensures that this is positive and less than one
is the same as the condition above that determines when the low type worker
will want to apply to the high type firm.

Once again, lets defer wondering why firms wages might differ and just
take it for granted that they do. We can now do the same basic calculations
what we did in the previous model to see if this change in the modeling
procedure improves things at all.

It is now possible to do all kinds of probability calculations using this
information. If you aren’t used to doing this, it might help to look at the
following picture:
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0
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1
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∗
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1

1
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1
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0

λ

1
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1
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∗
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0

λ

0

1

1

0

λ

1

1

2

0

1

2
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∗

1

1− π
∗

1− λ

π
∗

1

1

0

0

λ

1

π
∗

1

1

2

0

1

2

1− π
∗

1− λ

1− π
∗

1− λ

Nature

1

From an outsider’s perspective there are many things happening in this
model. First, one might say that nature determines whether each of the
workers is high or low. In the figure above, the nodes that represent this are
the open nodes. For example, at the very top of the tree there is an open
node that represents nature choosing whether worker 1 will be a high type,
which occurs with probability λ, or a low type, 1 − λ. The two edges or
branches that extend below this node represent these different choices, and
represent these choices, and are labeled with the appropriate probabilities.

A bit lower down the tree, there are some more open circles, for example
where nature chooses whether worker 2 is high or low, or a couple at the very
bottom where nature decides which of the two workers gets the job in case
they both apply to the same firm. We’ll get back to that momentarily.

At the end of the first two edges in the diagram, there are two red nodes.
These are places where worker 1 makes a decision about where to apply - the
edge that leads down to the left of these red nodes represents a decision to
apply at firm 1, while the edge that leads down to the right means apply at
firm 2. These edges are labeled with the probabilities with which the worker
actually makes these choices. As we calculated above, the high type worker
will apply to firm 1 (the high wage firm) with probability 1. So we labelled
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the two edges with a 1 and a 0 to indicate that this is what we believe will
happen.

At the rightmost red node, we are thinking about the worker having a
low type. As we calculated above, the low type worker should apply to firm
1 with probability π∗, so we label the edge leading down to the left with π∗

to indicate this, similarly for the edge leading to the right.
Then, as we move down the tree, we have four more open nodes, indicating

nature’s choice for worker 2’s type. Finally, at the blue nodes, worker 2 makes
a choice about whether to apply to firm 1 or firm 2.

If you follow the branches down through the tree, you will eventually
end up at the black nodes, called terminal nodes. Each of these represents
a complete history of play. For example, the path colored red has nature
choosing high for worker 1, worker 1 choosing to apply to firm 2, nature
making player 2 a high type as well, and worker 2 applying to firm 1.

At the very bottom of the tree, I labeled each of the terminal nodes with
a 1 if worker 1 gets the job, and with a 0 otherwise. Since this path tells me
everything that happened, I could label the terminal node with anything, for
example, the payoffs of both players. Here we’ll focus on a simpler thing and
just keep track of whether or not worker 1 gets the job.

We don’t know whether or not the red path will be followed. To find the
probability that this particular history will occur we just multiply together
the probabilities that are listed along the edges that make up the path. Again,
along the red path we would calculate λ ∗ 0 ∗ λ ∗ 1 to be the probability that
this path will be followed (this probability is 0 here because a high type
worker 1 would never apply to firm 2).

An event is a collection of paths. For example, the event that the worker
is a low type and applies to firm2 is colored green in the diagram. To find the
probability of an event, you find the probability of each of the paths in the
event, then add them all together. For example, there is a total of 5 paths
in the event where the worker is low and applies to firm 2. The probabilities
of each of the paths, from left to right, are

(1− λ) ∗ (1− π∗) ∗ λ ∗ 1

then
(1− λ) ∗ (1− π∗) ∗ λ ∗ 0

then
(1− λ) ∗ (1− π∗) ∗ λ ∗ π∗
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then

(1− λ) ∗ (1− π∗) ∗ λ ∗ (1− π∗) ∗
1

2

then

(1− λ) ∗ (1− π∗) ∗ λ ∗ (1− π∗) ∗
1

2
.

Summing these last five lines gives the probability of the event.
We are almost ready to do some reasoning. We need one last concept -

Bayes Rule. I copied the following diagram from oscarbonilla.com:

This is the standard way to describe conditional probability. Lets relate
it back to the tree diagram that represents our equilibrium. The big outer
(white) circle - labelled Universe - is one way to represent the collection of
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all the paths that appear in our diagram. All the paths together form an
event. Since we have to follow one of the paths in the tree diagram, the
event “something happens” occurs with probability 1. In other words, the
Universe in the diagram above has probability 1.

The colored circles in the diagram represent other events. For example,
the circle labelled A in the figure might represent the event in which the
first worker is a high type worker. That event would be all of the histories
that follow the left branch out of the node marked ’Nature’ at the very top.
You might try to write down the sum of all the probabilities for those paths
as we did above. If you did, you would find that each string of multiplied
probabilities begins with λ. If you factored out the λ, you would have a sum
inside your brackets which would be equal to one (make sure to verify that
for yourself). Then we would say, the probability of the event in which the
first worker is a high type is λ and the area of the colored circle (it looks
orange in my browser) marked A in the figure above would be λ to represent
that.

A second event might be the one where worker 1 finds a job. In the tree
diagram, this is the collection of all the paths that lead to terminal nodes
that have the label 1 underneath them. Again we would multiply out the
probabilities along each path and sum them up. The total probability we
get from that sum could then be represented by the area of the blue circle
labeled B above.

Notice that the circles overlap, but aren’t the same. Thats because there
are paths along which even a high type worker doesn’t get a job, and paths
along which a low type worker does get a job. Naturally, the area in the
intersection of the two circles represents the event in which worker 1 is both
a high type worker, and that he does get a job. We’d find that probability
by collecting all the paths that start out down the leftward edge at the very
top and also end at a terminal node that has a 1 beneath it.

So the probability of events can be found by summing up the probability
of all the histories that are included in the event, where the event itself is
defined by a bunch of things that have to occur. The event {A ∩ B} is just
a smaller number of branches than in the event A or the event B. Now we
can define conditional probability.

Formally, the probability of the event A conditional on the event B is

Pr {A|B} =
Pr {A ∩ B}

Pr {B}
.
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Since joint probabilities like Pr {A ∩ B} can always be written as products
of a conditional and marginal as in Pr {A ∩ B} = Pr {B|A}Pr {A} we get
the Bayes rule version

Pr {A|B} =
Pr {B|A}Pr {A}

Pr {B}
.

Sometimes it is easier to calculate conditional probabilities and multiply
them by marginals than it is to find all the branches then sum. This is
particularly true when you condition on a type after having found a Bayesian
equilibrium. For example, suppose A is the event “gets a job at the high
wage firm”. The event B is “has a high type”. Since Pr {A|B}Pr (B) =
Pr {A ∩B} and Pr {B} = λ, Pr (A|B) is just the probability calculation you
get by summing brances after you have already gone down the first branch.

This calculation is quite intuitive and you have been doing it implicitly from
the start. It is

Pr (A|B) = Qh =
λ

2
+ (1− λ) . (11)

Notice something about this formula - we used the equilibrium that we found
above to compute this probability because we wrote it as if a high type worker
applies to the high wage firm for sure. The same computation for the low
type gives

Ql = π (1− λ)
(π

2
+ (1− π)

)

.

Now, we can find the probabilty the worker has a high type and gets a
job at the high wage firm, or the worker is a low type and gets a job at the
high wage firm. This would be given by

λQh + (1− λ)Ql.

As before remember that Qh is computed assuming that high type workers
apply for sure to the high wage, while low type workers apply to the high
wage firm with a probability given by (10). The formula for π∗ depends on
wages and λ.

Before we go on observe something about this whole process. Our model
is a game which is defined by the two wage offers which we can see, and
λ, which we can’t. Suppose we play this game over and over (in a lab for
example), and observe that after many plays of the game the proportion of
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workers who get jobs at the high wage firm is Q̂. Assuming λ is the same in
all of them, then we should have

λQh + (1− λ)Ql = Q̂.

Since the left hand side of this equation involves λ, which we can’t see, while
the right hand side is just a proportion that we measure in our experimental
data, we could actually solve this equation to find a particular valueλ̂. This
process is called identifying λ from the data. The solution λ̂ would be called
our estimate of λ.

Now (as analysts) we are in business. Suppose we want to try a policy
that will work if and only if the worker is a high type. For example, sup-
pose we want to spend money training the worker, and that the worker will
only benefit from the training if they are sufficiently educated. We can now
estimate the probability with which our policy will succeed.

Now conditional probability isn’t as simple as it was when conditioning
on type. Conditional on getting a job at the high wage firm, the probability
with which the worker has a high type, by Bayes rule, is

Pr {type is high|job at high wage} =

Pr {worker gets a job at the high wage|type is high} ∗ Pr {type is high}

Pr {worker gets a high wage job}

=

(

λ

2
+
(

1− λ̂
))

λ̂

λ̂
(

λ̂

2
+
(

1− λ̂
))

+
(

1− λ̂
)(

π̂
(

1− λ̂
)

(

π̂

2
+ (1− π̂)

)

) . (12)

In this expression π̂ is the expression given by substituting λ̂ into (10). We
have estimated that our policy will succeed with probability given by (12).

Problems:

1. Find the equilibrium in the problem above when y1 = y2. How does it
compare to the model presented in the first section above.

2. What is the symmetric application strategy that maximizes the ex-
pected number or matches? the expected revenue for both firms?
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3. Suppose that λw1

2
+ (1− λ)w1 < w2. Write down the conditions that

describe the Nash equilibrium for the workers’ application game. Can
you find the two application probabilities? Numerically?

4. Can you provide conditions under which Ql < Qh? As a hint, note that
this will depend on λ, w1 and w2. To make this manageable suppose
that w1 = αw2 and let w2 be some constant w so that your answer
depends only on λ and α. Try to draw a diagram with α on one axis
and λ on the other, dividing the diagram into regions where Q1 > Q2

(and remember that there are going to be some regions where the high
type worker won’t apply for sure to the high wage firm).

5. In the tree diagram, label all the paths in which the worker gets a job.
Use Bayes Rule to calculate the probability that the worker has a high
type conditional on him finding a job.

6. Use Bayes Rule to find the probabiity that a worker gets a job at each
of the two different wages conditional on the two events finding a job
and being a high type worker, then finding a job and being a low type
worker. Use these conditional probability distributions to calculate the
expected wage of low and high type workers conditional on finding jobs.

4 A continuous version

The idea that players can have either a good or bad type is actually pretty
awkward. It works for something like a drug test, which an applicant can
either pass or fail. Yet firms are interested in much more. As we tried to
find the equilibrium we had to worry about things like whether there would
be an equilibrium in which good workers would apply only at the high wage
firm. Ultimately, the algebra we had to do became very complicated.

Another approach is to assume that workers ’types’ are taken from a very
large set - a good example here would be the set [0, 1]. It might seem that
would make it much harder to find an equilibrium. Often that isn’t the case.

What we’ll do here is to assume that when workers apply, firms interview
them and place them on a scale between 0 and 1. For example, they might
test their math skill, their writing skill, and various personality attributes.
Their score becomes their ’type’ and the firm just offers the job to the worker
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with the highest type.2

Our second assumption will be that each worker knows his or her own
type, but doesn’t know the type of the other worker. For that reason, we
need to allow for the possibility that each different type of worker will act
differently. The way this is done is to imagine that each worker uses a
strategy rule π that specifies for each value of their type, the probability
with which they will apply to the high wage firm. Formally we would write
σ : [0, 1] → [0, 1]. That just says that for each type t in [0, 1] we specify a
π (t) which is the probability the worker applies to the high wage firm.

This is really no different from what we did in the previous section where
the good worker used a different probability from the bad worker.

To write the payoffs, we have to specify what each worker believes about
the type of the other worker. For this, lets assume that each worker’s type
is independently drawn from a fixed distribution F whose support is [0, 1].
The support is the smallest closed set that has probability 1.

As before, if the worker gets the job at the high wage firm, he or she earns
w1, similarly for firm 2. The worker gets the job if the other worker doesn’t
apply, or if the other worker has a lower type. To work out the probability
of that event, we’ll use the strategy rule π. Suppose the worker has type t.
The probability the other worker has a higher type is 1−F (t). Just because
the worker has a higher type, that doesn’t necessarily mean they’ll actually
apply to the wage w1. The probability of that event is

∫ 1

t

π (t) dF (t)

which means that the expected payoff the worker of type t gets from applying
to firm 1 is

w1

(

1−

∫ 1

t

π (t) dF (t)

)

A ’Bayesian’ equilibrium of this game is a strategy rule that has the

2Many companies who are hiring programmers use online testing sites to check skills
of potential employees. (search for online testing) Passing the online test then results in
one or more interviews. In economics, a relatively new innovation is something called a
’pre-doc’, in which students with masters or honors degrees can work as (paid) research
assistants for professors in well known universities for a year as a way of showing their
suitability for the ph’d program. Applications for pre-docs typically involve a test.

19



property that π (t) > only if

w1

(

1−

∫ 1

t

π
(

t̃
)

dF
(

t̃
)

)

≥ w2

(

F (t) +

∫ 1

t

π
(

t̃
)

dF
(

t̃
)

)

I will show you that there is a Bayesian equilibrium in which each worker
uses a very simple rule. This rule is

π (t) =

{

1 t ≥ t∗

π otherwise.

Here t∗ and π are fixed constants between 0 and 1. I’ll tell you exactly what
they are shortly.

To show that these rules can be part of a Bayesian equilibrium, I have
to show you that if a worker uses them, he or she will never be able to do
better by deviating. To do this, I have to substitute these rules into the
payoff functions I described above.

If worker 2 is expected to use this rule, then the payoff to worker 1 when
he applies to firm 1 will be given by

{

F (t)w1 + (F (t∗)− F (t)) (1− π)w1 t < t∗

F (t)w1 otherwise.

If, on the other hand, worker 1 applies to firm 2, the same calculation gives
expected payoff

{

F (t)w2 + (F (t∗)− F (t)) πw2 + (1− F (t∗))w2 t < t∗

w2 otherwise.

Now choose t∗ to satisfy
F (t∗)w1 = w2.

Its easy to verify that when t∗ is chosen this way, both workers will strictly
prefer to apply to firm 1 if their types are larger than t∗ (because they have
a better chance of getting the job that a worker of type t∗does, and that
worker is indifferent).

On the other hand, if a worker has a type below t∗ and he/she is supposed
to randomize with a probability between 0 and 1, then as you have learned,
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he/she will only be willing to do so if the payoffs to the two choices are
exactly the same, i.e.,

F (t)w1 + (F (t∗)− F (t)) (1− π)w1 =

F (t)w2 + (F (t∗)− F (t)) πw2 + (1− F (t∗))w2.

This equality has to be true uniformly for types less than t∗, which means
that the derivatives of the functions with respect to t have to be the same,
i.e.,

w1 (f (t)− f (t) (1− π)) =

w2 (f (t)− πf (t)) .

You can see that the f (t) cancels out, allowing you to solve for

π =
w2

w1 + w2

.

The payoffs from apply to both firms have the same slope when π is
chosen this way. As t → t∗, the payoff at firm 1 converges to w1F (t∗) while
the payoff at firm 2 converges to w2, and these two payoffs are equal by the
choice of t∗. So the payoffs must be equal to each other uniformly in t.

This means that, as promised, workers whose types are below t∗ are in-
different, so that the simple strategy is always a best reply for them, as it is
for workers whose types are above t∗ who strictly prefer to apply to firm 1
as the strategy specifies. Since no worker of either type can find a profitable
deviation, our rule is a Bayesian equilibrium strategy rule.

(y1 − w1)
(

1− (F (t∗) (1− π))2
)
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