
Centipede Game

Here is the extensive game we discussed in class:
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Figure 1: Centipede Game

Player 1 moves first, and can end the game by choosing l. Alternatively,
he can pass the move on to 2 who has the same choice. We want to find all
the subgame perfect equilibrium outcomes of this game. The branches of the
tree represent actions in the game. The points where the branches split are
referred to as decision nodes. Player 1 has an decision node at the start of the
game. The label above an decision node identifies the player whose turn it is
to move. A connected set of branches is called a history, because it specifies
a sequence of actions for the players. Notice that the centipede game has the
property that each player sees the whole history of the game in each of his
decision nodes. This isn’t always true. A game in which each player sees the
full history at each of his decision nodes (i.e., at every instance where he has
to make a decision) is called a game of perfect information. The game ends
at points where no new branches emerge. These points are called terminal
nodes. They are labeled with the payoffs, the payoff to player 1 being listed
first.

To find the subgame perfect equilibria for this problem, you work back-
ward - starting with each decision node that leads to a terminal node, and
determining what action is most favorable to the player whose turn it is to
move in that decision node. In this game, we begin with the information set
labeled 2 on the bottom right. Player 2 has two choices, move left which
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gives her 4, and move right which gives her 3. Evidently she moves left as
indicated by the pink line in the next diagram.
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Figure 1: Centipede Game

What this says is that, if the game reaches the final decision node (it
won’t in equilibrium), then player 1 should expect player 2 to choose to go
left.

We can now proceed to the decision node before that in which player 1
makes a decision. If he goes left, he ends the game and receives a payoff 3.
If he goes right, then he passes the move to 2. As we just argued, 2 should
choose to go left in that case, so 1’s payoff with be 2. Since 3 is bigger than 2,
player 1 should choose to go left at his last decision node - as in the following
diagram.
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Figure 1: Centipede Game

We can go further. At her first decision node, player 2 can go left and
end the game for a payoff of 2. She could choose to go right, in which case,
she should expect 1 to go left, giving 2 a payoff of 1. So 2 has to choose left
at her first decision node. Finally 1 must choose down.

A strategy for each player in this game is a specification of an action for
each of their decision nodes. This makes it possible to describe the normal
form of the game. The notation ij means that the corresponding player goes
i(either left or right) at his or her first decision node, and j (either left or
right) at her second. The normal form of this game looks like this

ll lr rl rr

ll 1, 0 1, 0 1, 0 1, 0
lr 1, 0 1, 0 1, 0 1, 0
rl 0, 2 0, 2 3, 1 3, 1
rr 0, 2 0, 2 2, 4 3, 3

Make sure you understand the payoffs. For example, the pair of strategies
(rl, rl) say that 1 will choose to go right at his first decision node, and left
at his second decision node, similarly for 2. The outcome is then that 1 goes
right, 2 goes right, then 1 chooses left, leading to the payoff (3, 1) as indicated
in the box.

There are no strictly dominated strategies in this game, as you should
verify for yourself. By exhaustively checking each cell of the payoff matrix
for profitable deviations, you should be able to verify that there are 4 Nash
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equilibria coinciding with the four cells in the upper left hand corner of the
table.

To see how subgame perfection works, lets focus on the Nash equilibrium
(lr, lr). We would explain that this is a Nash equilibrium because neither
player can benefit by unilaterally deviating to another of their strategies. For
example, player 1, who chooses the row, would lower his payoff from 1 to 0
if he deviates and uses on of his strategies which select r at his first decision
node. This is because he expects player 2 to follow by playing l. Player
2 doesn’t think there is anything he can do to affect his payoff because he
expects player 1 to start the game by choosing l. His strategy to play l in
his first decision node is the best he can do.

Subgame perfectionists would then argue that, though this is a Nash
equilibrium, it isn’t a very good one. In fact, they would say it is completely
implausible. The reason is that if 2 every found himself in his first decision
node actually making a choice, and if he believed that player 1 were using the
strategy lr, then at that point he would understand that he should switch
his action to r in order to take advantage of the fact that 1 would then follow
by playing r in his second decision node, giving him the opportunity to take
l on his last move, and earn 4.

You might try to counter that 2 shouldn’t expect 1 to choose r at his
second decision node. She should understand that 1 will see that she only
wants to get to that decision node in order to choose l. If you see this, then
you are using subgame perfect reasoning already, and you will see that the
way to make things work out is to work backwards through the extensive
form, calculating what action each player will take at each decision node.
This yields the unique subgame perfect equilibrium in which each player
uses the strategy l, l. It is much easier to do this in the extensive form than
it is in the normal form of the game.

1 Subgame perfection in perfect information

games

The centipede game is an example of a game of perfect information, which
means that each players knows everything that has happened previously in
the game at the point where he or she chooses an action. I’ll give a brief
formal description of a game of perfect information help you follow the ar-
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guments.
An extensive form game of perfect information is made up of a collection

of players I - you can just think of this set as names of the people playing.
In the centipede game this is just player 1 and player 2. The game has a set
of histories H that are just a list of the various things that can happen in the
game in the sequence with which they ocurred. For example, player 1 plays
right then player 2 plays right is a history. Any set of connected branches in
the tree above is a history. If you just count them you will find 9 histories in
all (include the very top of the tree as one of the histories).

The set H of possible histories can be partitioned into a collection of I+1
subsets. The first such subset is the set of histories in which player 1 must
make a choice, the second, the set of histories where player 2 must make a
choice, et cetera. In the example above, there are two histories where each
player must make a choice, for a total of 4. The other five hisotires are called
terminal histories - histories at which the game comes to an end. Use the
notation Hi be the set of histories where player i must make a choice.

After each history hi ∈ Hi, player has a set of possible moves A (hi) . Let
Ai = ∪hi∈Hi

A (hi) - which just means Ai is the set of all possible actions
for i. In the centipede game, Ai = A (hi) = {L,R} for each i and each hi.
A strategy for i is a mapping σi : Hi → Ai satisfying the condition that
σ (hi) ∈ A (hi) for each history hi ∈ Hi.

Finally, refer to the set of terminal histories as HI+1. Instead of having a
set of actions associated with it, each terminal history just has a list of the
payoffs to each player.

A strategy σi for player i is a function that takes each history in Hi (where
player i makes a choice) and assigns a probability distribution over the actions
in Ai. A pure strategy is one in which the player assigns probability 1 to
one of his actions at each history in Hi. To see how stuff works, once you
pick a pure stategy for each of the players in the game, these strategies will
define a unique history leading from the empty history at the top of the tree
to one of the terminal nodes where the payoffs are. We worked all these
paths out when we defined the normal form of the centipede game above.
This how each set of strategies defines a payoff for each of the players. From
the relation between all the possible strategies and the payoffs, we can look
for a Nash equilibrium in the usual way, except for the fact that there are
apparently a lot of strategies that need to be checked. A Nash equilibrium
is just a set of strategies that are all best replies to one another.

Here is what the centipede game looks like with all the histories labeled:
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The fact that an extensive game looks like a tree reveals something that
seems useful. If you take any history in which it is player i’s turn to move,
and you just cut out all the stuff that has already happened in that history,
you get another tree that defines a new extensive game. There are fewer
histories in this new game, but they can be partitioned as we did above,
and new strategies could be defined for this new slightly simpler game. This
sub-tree is referred to as a proper subgame.

For example, in the figure above, at the history h2 both players have
played right once. The remainder of the game is another centipede game,
except is has ony 5 histories, {h2, h3, h6, h7, h8}, four of which are terminal
nodes.

The strategies that each player used in the original game already specify
actions for each history in this new game. These strategies are called contin-

uation strategies. A subgame perfect equilibrium is a collection of strategies
for the original game having the property that the continuation strategies
constitute Nash equilibrium for each of the proper subgames.

In our first example above, suppose that player 1 uses the strategy defined
as follows:

σ1 (h) =

{

L h = h0

L h = h2
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while 2 uses:

σ2 (h) =

{

L h = h1

R h = h3

This pair constitute a Nash equilibrium because player 1 can’t improve on his
payoff of 1 as 2 is expected to play L at h1. Similarly, 2 can’t do better than
0 because she expects 1 to play L in history h0. However, it isn’t subgame
perfect. The reason is that at history h3, 2’s continuation strategy says to
play R, though she can do strictly better by switching to L.

It isn’t that hard to find the subgame perfect equilibrium strategies. The
idea is to look down the tree until you find a history in which all the histories
that follow are terminal histories. The only one in our centipede example is
h3, though often there will be many histories like this. In any case, if player
2 is going to play a strategy associated with a subgame perfect equilibrium,
she will have to choose to go left at h3. So we can record this as σ∗(h3) = L.

If player 2 is going to play L, the we can actually replace the branches
below h3 with the corresponding payoffs that will occur when she does that.
Then our centipede game will actually have the same subgame perfect equi-
librium outcome as the following game:
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Now the game has changed in such a way that history h2 seems to be
followed by nothing but terminal nodes, so we can do the same thing and set
σ1 (h2) = L, and collapse the two histories {h3, h6} into a single terminal node
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with payoff (3, 1). We can then repeat this process and find the strategies
associated with a subgame perfect equilibrium - each player goes left at each
history where they must make a decision.

2 A Non-Generic Variant

The example above is special because it has a unique subgame perfect equi-
librium in pure strategies. Things are more complicated when players use
mixed strategies. To see what can happen, we could modify the payoffs in
the centipede game slightly as follows:

rl

1, 0

1

rl

0, 2

2

r1

3, 1

1

r

3, 3

1

3, 4

2

Figure 1: Centipede Game - Non-generic

The difference between this game and the original centipede game is that
the payoff for the leftward terminal node has been changed from (2, 4) to
(3, 4). Without comment, lets just start to do backward induction. At her
second decision node, 2 has only 1 sensible choice, which is to go left. As we
move back up the tree, we then see that in 1’s second decision node, he can go
left, for a payoff of 3, or go right, at which point he should expect 2 to go left.
Now, 1 is indifferent. It is now reasonable for 1’s behavior at this decision
node to be a bit unpredictable. Lets use the mixed strategy approach and
assume that 1 plays left in his second decision node with probability π.

We might depict this situation in the following way:
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Figure 1: Centipede Game - Non-generic

Notice that we have labeled the branches at 1’s second decision node with
the probabilities with which 1 chooses each action. Now we proceed exactly
as we did above, starting with the history h3 where 2 has to choose L. We
collapse the two histories into a single terminal node with payoff (3, 4).

Since 1 doesn’t care what happens in the history h2, he can randomize
with any probability π in a subgame perfect equilibrium. Once we fix π

we can replace the two continuation histories with a single terminal node
whose payoff is (3, π + (1− π) 4). This makes it possible for 2 to evaluate
the action r in her first decision node. The payoff to 2 of using r is evidently
π+(1− π) 4. So 2 should use the action r at her first decision node whenever
1 chooses l in his second decision node with probability less than 2

3
.

Finally, this allows us to figure out what 1 will do in his first decision
node. If π < 2

3
, then 2 should choose r in her first decision node. If that

occurs, 1 can choose either of his actions in his last decision node, and get
3 - evidently much better than the payoff 1 he gets by choosing l. If π > 2

3
,

then 2 will choose l in her first decision node, in which case 1 should choose
l as well. What we have just described is a continuum of different subgame
perfect equilibrium outcomes in which every player is using an action in each
decision node that maximizes their payoff given continuation play.

What happens when π = 2

3
. Then 2 is indifferent between l and l at her

first decision node. Let ρ be the probability with which 2 is supposed to
choose left. If 2 chooses right at this first decision node (and 1 continues to
choose l with probability 2

3
), 1’s payoff is 3, if 2 chooses l it is zero. So the

expected payoff for 1 when he chooses r is (1− ρ) 3. Evidently, there are a
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continuum of subgame perfect equilibrium in which 1 plays left at his first
decision node and plays left at his second decision node with probability 2

3
,

while two chooses left with probability between 2

3
and 1.

Exercise: Write down the normal form of this non-generic centipede
game, and find the mixed Nash equilibrium in the usual way.

3 Imperfect Information

You have already seen a whole bunch of games with imperfect information.
Lets use the game we discussed in class as an example. If you recall the story,
the NHL wants to continue to have a hockey team in Phoenix. Quebec city
would like to have the team moved to Quebec. The two cities then have the
option of trying to bribe the NHL by subsidizing arenas and cutting taxes for
the hockey team. In class, we discussed the possibility that the cities would
simply build a new arena for the team. The payoff matrix looked like this
(though I switched the payoffs around to make Quebec the row player):

d b

d 10, 30 10, 20
b 20, 10 0, 20

Quebec is the row player in this example. The actions d (don’t build the
arena) and b (build a new arena) generate payoffs that depend on what the
other city does. If neither city builds a new arena, the NHL does what it
wanted in the first place and leaves the team in Phoenix. Phoenix gets 30 in
this case. Quebec get 10 because they like teams no matter where they are.
If costs each city 10 to build an arena, so if they both build, the NHL again
stays in Phoenix, and both citys lose the cost of the arena, Phoenix ends up
with 20, Quebec 10. If Phoenix builds unilaterally, it just looses the cost of
the arena, and its payoff falls to 20. If Quebec builds unilaterally, then the
NHL decides to move the franchise to Quebec to make more money. Quebec
likes this because gaining the hockey team more than makes up for the cost
of the arena. If you remember, this game has a unique Nash equilibrium in
which each city builds with probability 1

2
.

Lets look at this problem in a slightly different way. Each city makes a
unilateral decision about whether or not to build the arena. Then they both
announce their decisions at the same news conference. In this story, Quebec
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makes a decision about whether or not to build first, but Phoenix doesn’t
get to see this decision before they make their own. The following Figure
shows how we represent this:
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Figure 1: An extensive game

To capture the fact that Phoenix doesn’t actually know which choice
Quebec made, we draw a dashed line between the two decision nodes at
which Phoenix makes a choice. We refer to this collection of decision nodes
as an information set. Generally, we think of players as making decisions in
information sets and note in passing that in a game of perfect information
every information set consists of exactly one decision node.

Yet in this representation of the game, there are two decision nodes in
Phoenix’s information set. When some information sets have more than one
decision nodes, we call the game a game of imperfect information. To specify
a strategy for this game, we need to specify a choice for a player for each
of his or her information sets. This is easy here because Phoenix only has
one information set. So all we have to do to describe Phoenix behavior is to
describe a mixed strategy for that information set. Quebec has just a single
information set as well consisting of a single decision node - even simpler. A
Nash equilibrium is a pair of strategies that are best replies to one another.
Evidently both cities should announce a commitment with probability 1

2
.

Finally, lets give Quebec a second option, by allowing them to hold a
press conference announcing their decision the week before Phoenix does.
However, we want this to be an option for Quebec - they can choose to do
it if they want, but they could also wait a week and make an announcement
at the same time as Phoenix.
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Figure 1: An extensive game

Lets go over this structure. Quebec begins the game by making a decision
about whether or not to jump the gun and make their announcement the week
before Phoenix does. We represent this by giving Quebec a decision node at
the top of the game in which it has three possible actions, n which means
cancel the press conference until next week, d, which means hold the press
conference this week and announce you won’t build, and b, which means hold
the press conference this week and announce that you will build. If Quebec
chooses either of these latter two decisions, then Phoenix simply decides at
its final decision node whether to build or not after learning what Quebec is
going to do.

The alternative for Quebec is to put the press conference off until next
week. At that point Quebec again has a chance to make a decision, but its
position is a little different in the sense that Phoenix will no longer hear what
it is going to do before it makes its own decision.

Part of this looks just like the centipede game. For example if we follow
the rightmost branch where Quebec chooses to build, then Phoenix has a
decision node. By backward induction, Phoenix should choose to build at
this decision node, since it gets 20 if it builds and only 10 if it doesn’t.
Similarly if Quebec goes down the central branch and makes a pre-emptive
announcement that it won’t build, then Phoenix should also choose not to
build.

How about the leftmost branch where Quebec chooses to postpone its
press conference until next week. Then it forces itself to make a choice at
the same time as Phoenix. Subgame perfection is going to force us to expect
that when Quebec chooses this option, it must anticipate that the choices
that Phoenix makes will be part of a Nash equilibrium of our original game -
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i.e., when Phoenix reaches its non-degenerate information set, it will choose
to build and not to build with equal probability. Once we know that, we
can determine the outcome of the whole game since should Quebec choose to
postpone its new conference, it should expect a payoff of 10. Knowing that,
we can compare this with what would have happened had Quebec chosen one
of its other actions. If it announced a week early that it was going to build,
it should expect Phoenix to build as well, giving it a payoff of zero. If it
announces early that it won’t build, then Phoenix won’t build and Quebec’s
payoff would be 10, the same as if it had deferred its press conference to the
next week.

Exercise: Find all the mixed subgame perfect equilibrium for this game.
For completeness, we can write down the normal form of this game. Que-

bec has two decision nodes in the game for which it must specify an action.
Lets call this strategy a pair ij where i is what it chooses at the beginning
of the game, and j is what it chooses when it defers the news conference.
Phoenix must specify and action for each of its two decision nodes, and for
its information set. We can list them in order left to right - so ijk means
that Phoenix takes action i in its information set, action j when Quebec
announces that it won’t build at its first press conference, and action k if
Quebec announces that it will build. Here is the normal form:

ddd ddb dbd dbb bdd bdb bbd bbb

nd 10, 30 10, 30
nb
dd
db
bd
bb 0, 20

Exercise: Fill in the other payoffs in this normal form. Check to see
if any strategies are strictly dominated, or whether you can solve the game
by iterated deletion of strictly dominated strategies. Check to see if any
strategies are weakly dominated. What do you get if you iteratively delete
weakly dominated strategies.
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